Effects of BTA and TBAB electrolyte additives on the properties of zinc electrodes in zinc–air batteries

Abstract

In order to improve the performance of zinc–air batteries, the effects of addition amounts of single Benzotriazole (BTA), Tetrabutylammonium bromide (TBAB) and their compounds on the electrochemical performance of the zinc electrodes were studied. In addition, the mechanisms of the hydrogen evolution inhibition, the dendrite suppression and the passivation improvement were investigated. The results showed that the addition of BTA, TBAB or the combination of both to the alkaline electrolyte were all beneficial for inhibiting the hydrogen evolution and corrosion, suppressing the dendrites and delaying the passivation. When BTA and TBAB were added alone, the optimal amounts were 100 mg/L and 200 mg/L, respectively. It was found that the hydrogen evolution inhibition effect of BTA was better than that of TBAB, while the effect of TBAB on suppressing the zinc dendrite was better than BTA. When BTA and TBAB were added together, the optimal amount was 100 mg/L BTA + 50 mg/L TBAB. Under this condition, the hydrogen evolution and corrosion inhibition efficiency was increased from 48.5 to 61.4% when 100 mg/L BTA was added alone. The specific capacity of the zinc–air battery after 50th cycles was increased from 327.3 mAh/g without additives to 475.6 mAh/g, and the capacity retention rate after 50 cycles reached 83.2%.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

References

  1. 1.

    R. Mainar, E. Iruin, L.C. Colmenares, J. Energy. Storage 15, 304–328 (2018)

    Article  Google Scholar 

  2. 2.

    Y.G. Li, H.J. Dai, Chem. Soc. Rev. 43, 5257–5275 (2019)

    Article  Google Scholar 

  3. 3.

    H.S. Kim, Y.N. Jo, W.J. Lee, K.J. Kim, C.W. Lee, Electroanalysis 27, 517–523 (2015)

    CAS  Article  Google Scholar 

  4. 4.

    J. Fu, Z.P. Cano, M.G. Park, Adv. Mater. 47, 1–34 (2016)

    CAS  Google Scholar 

  5. 5.

    L.B. Sun, F.X. Zhao, Y.X. Da, Z.Z. Zhang, P. Wang, J. Electrochem. Soc. 16, A4175–A4180 (2019)

    Article  Google Scholar 

  6. 6.

    Y.X. Da, F.X. Zhao, J.C. Shi, J. Electro. Mater. 49, 2479–2490 (2020)

    CAS  Google Scholar 

  7. 7.

    X.K. Wang, N. Li, J.S. Zhang, Mater. Protec. 07, 15 (2002)

    Google Scholar 

  8. 8.

    J.M. Wang, L. Zhang, C. Zhang, J. Func. Mater. 01, 45–47 (2001)

    Google Scholar 

  9. 9.

    Y. Xiao, J.C. Shi, F.X. Zhao, J. Electrochem. Soc. 165, A47–A54 (2018)

    CAS  Article  Google Scholar 

  10. 10.

    P. Wang, F.X. Zhao, Z.Z. Zhang, Chin. J. Nonferrous Met. 21, 2236–2241 (2011)

    CAS  Google Scholar 

  11. 11.

    J.H. Yang, Z.Z. Zhang, F.X. Zhao, Chin. J. Nonferrous Met. 19, 334–338 (2009)

    CAS  Google Scholar 

  12. 12.

    J.C. Shi, F.X. Zhao, L.B. Sun, Chin. Battery Ind. 22, 29–33 (2018)

    Google Scholar 

  13. 13.

    D.J. Park, E.O. Aremu, K.S. Ryu, Appl. Surf. Sci. 456, 507–514 (2018)

    CAS  Article  Google Scholar 

  14. 14.

    J.C. Riede, T. Turek, U. Kunz, Electrochim. Acta. 269, 217–224 (2018)

    CAS  Article  Google Scholar 

  15. 15.

    K.E.K. Sun, T.K.A. Hoang, T.N.L. Doan, ACS. Appl. Mater. Inter. 9, 9681–9687 (2017)

    CAS  Article  Google Scholar 

  16. 16.

    J. Lian, Z.M. Shi, H. Xu, Surf. Technol. 44, 19–26 (2015)

    CAS  Google Scholar 

  17. 17.

    S.T. Mario, M.C.A. Escobar, F. Ocayo, Chem. Phys. Lett. 689, 128–134 (2017)

    Article  Google Scholar 

  18. 18.

    A. Kokalj, N. Kovacevic, S. Peljhan, M. Finsgar, A. Lesar, I. Milosev, ChemPhysChem 12, 3547–3555 (2011)

    CAS  Article  Google Scholar 

  19. 19.

    J. Rodriguez, M. Mouangar, A. Roobroeck, Corros. Sci. 132, 56–67 (2018)

    CAS  Article  Google Scholar 

  20. 20.

    K. Aramaki, Corros. Sci. 43, 1985–2000 (2001)

    CAS  Article  Google Scholar 

  21. 21.

    V. Sirtori, F. Zambon, L. Lombardi, J. Electro. Mater. 29, 463–467 (2000)

    CAS  Article  Google Scholar 

  22. 22.

    L.P. Kazanskii, E.M. Sokolova, Prot. Met. Phys. Chem. 49, 844–853 (2013)

    CAS  Article  Google Scholar 

  23. 23.

    X. Yi, G.B. Yi, X.W. Hu, Q.L. Li, R.H. Zhang, J. Mater. Sci. Mater. Electron. 30, 21126–21137 (2019)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Jiangsu University Advantage Discipline Construction Project (Jiangsu Gov. Office issued 2018-10) and a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Fangxia Zhao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, P., Zhao, F., Chang, H. et al. Effects of BTA and TBAB electrolyte additives on the properties of zinc electrodes in zinc–air batteries. J Mater Sci: Mater Electron 31, 17953–17966 (2020). https://doi.org/10.1007/s10854-020-04347-x

Download citation