Optoelectronic properties of ZnO thin films grown by radio frequency magnetron sputtering


In the present work, Zinc oxide (ZnO) thin films with suitable optoelectronic properties required for application as transparent electrodes have been grown successfully on glass and silicon substrates by radio frequency magnetron sputtering technique at room temperature. A systematic study of the effect of film thickness on optical, electrical, and structural properties of the films was carried out by spectrophotometer, four-point probe, X-ray diffraction, and high-resolution transmission electron microscopy (HRTEM). It is observed that the film growth rate increases with increasing film thickness. The obtained ZnO films not only have an average transmittance greater than 90% in the visible region but also have low resistivity (ρ = 4 × 10− 2 Ω cm). All the deposited films are polycrystalline with a wurtzite structure and highly textured along the c-axis perpendicular to the substrate surface. As the film thickness increases, the intrinsic compressive stress decreases.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9


  1. 1.

    Y.S. Song, N.J. Seong, K.J. Choi, S.O. Ryu, Thin Solid Films 546, 271 (2013)

    CAS  Article  Google Scholar 

  2. 2.

    J. Owen, M.S. Son, K.H. Yoo, B.D. Ahn, S.Y. Lee, Appl. Phys. Lett. 90 (, 033512 (2007), )

    Article  Google Scholar 

  3. 3.

    X. Li, Y. Hu, J. South-Cent. Univ. Natl. (Nat. Sci. Ed.) 30, 6 (2011)

    CAS  Google Scholar 

  4. 4.

    H. Kim, J.S. Horwitz, W.H. Kim, A.J. Ma¨kinen, Z.H. Kafafi, D.B. Chrisey, Thin Solid Films 420–421, 539 (2002)

    Article  Google Scholar 

  5. 5.

    H.T. Cao, C. Sun, Z.L. Pei, A.Y. Wang, L.S. Wen, R.J. Hong, X. Jiang, J. Mater. Sci.: Mater. Electron. 15, 169 (2004)

    CAS  Google Scholar 

  6. 6.

    S. Chen, S. Wei, J. South-Cent. Univ. Natl. (Nat. Sci. Ed.) 34, 72 (2015)

    Google Scholar 

  7. 7.

    N. Yamamoto, H. Makino, S. Osone, A. Ujihara, T. Ito, H. Hokari, T. Maruyama, T. Yamamoto, Thin Solid Films 520, 4131 (2012)

    CAS  Article  Google Scholar 

  8. 8.

    J. Hu, Y. Zhou, H. Liu, L. Meng, M. Bao, Z. Song, J. South-Cent. Univ. Natl. (Nat. Sci. Ed.) 29, 6 (2010)

    CAS  Google Scholar 

  9. 9.

    M. Hjiri, L.E. Mir, S.G. Leonardi, A. Pistone, L. Mavilia, G. Neri, Sens. Actuators B 196, 413 (2014)

    CAS  Article  Google Scholar 

  10. 10.

    A. Barhoumi, G. Leroy, B. Duponchel, J. Gest, L. Yang, N. Waldhoff, S. Guermazi, Superlattices Microstruct. 82, 483 (2015)

    CAS  Article  Google Scholar 

  11. 11.

    T. Shibata, K. Unno, E. Makino, Y. Ito, S. Shimada, Sens. Actuators A 102, 106 (2002)

    CAS  Article  Google Scholar 

  12. 12.

    J.H. Gu, LuL.Zhou Lu, Z.Y. Zhong, J. Mater. Sci.: Mater. Electron. 26, 734 (2015)

    CAS  Google Scholar 

  13. 13.

    C.H. Chao, D.H. Wei, J. Vis. Exp. 104, e53097 (2015)

    Google Scholar 

  14. 14.

    M.G. Tsoutsouva, C.N. Panagopoulos, D. Papadimitriou, I. Fasaki, Mater. Sci. Eng. B 176, 480 (2011)

    CAS  Article  Google Scholar 

  15. 15.

    D.T. Speaks, Int. J. Mech. Mater. Eng. 15, 1–14 (2020)

    Article  Google Scholar 

  16. 16.

    S. Rahmane, M.S. Aida, A. Chala, H.B. Temam, M.A. Djouadi, Plasma Process. Polym. 4, s356 (2007)

    Article  Google Scholar 

  17. 17.

    K. Ravichandran, A. Anbazhagan, N. Dineshbabu, C. Ravidhas, J. Mater. Sci.: Mater. Electron. 26, 7649 (2015)

    CAS  Google Scholar 

  18. 18.

    S. Rahmane, M.A. Djouadi, M.S. Aida, N. Barreau, B. Abdallah, N.H. Zoubir, Thin Solid Films 519, 5 (2010)

    CAS  Article  Google Scholar 

  19. 19.

    S. Rahmane, M.A. Djouadi, M.S. Aida, N. Barreau, Thin Solid Films 562, 70 (2014)

    CAS  Article  Google Scholar 

  20. 20.

    S. Rahmane, M.S. Aida, M.A. Djouadi, N. Barreau, Superlattices Microstruct. 79, 148 (2015)

    CAS  Article  Google Scholar 

  21. 21.

    Y. Shu, W. Water, J.T. Liaw, J. Eur. Ceram. Soc. 23, 1593 (2003)

    Article  Google Scholar 

  22. 22.

    R. Tuyaerts, O. Poncelet, J.P. Raskin, J. Proost, J. Appl. Phys. 122, 155306 (2017)

    Article  Google Scholar 

  23. 23.

    G. Kiriakidis, M. Suchea, S. Christoulakis, P. Horvath, T. Kitsopoulos, J. Stoemenos, Thin Solid Films 515, 8577 (2007)

    CAS  Article  Google Scholar 

  24. 24.

    K. Yasui, A. Asano, M. Otsuji, H. Katagiri, A. Masuda, H. Nishiyama, Y. Inoue, M. Takata, T. Akahane, Mater. Sci. Eng. B 148, 26 (2007)

    Article  Google Scholar 

  25. 25.

    I. Sayago, M. Aleixandre, L. Arés, M.J. Fernandez, M.C. Horrillo, Appl. Surf. Sci. 245, 273 (2005)

    CAS  Article  Google Scholar 

  26. 26.

    Y. Natsume, H. Sakata, Thin Solid Films 372, 30 (2000)

    CAS  Article  Google Scholar 

  27. 27.

    Y. Natsume, H. Sakata, T. Hirayama, Phys. Status Solidi A 148, 485 (1995)

    CAS  Article  Google Scholar 

  28. 28.

    E. Burstein, Phys. Rev. 93, 632 (1954)

    CAS  Article  Google Scholar 

  29. 29.

    T.S. Moss, Proc. Phys. Soc. B 67, 775 (1954)

    Article  Google Scholar 

  30. 30.

    C.C.F. John, J.B. Frank, J. Electrochem. Soc.: Solid-State. Sci. Technol 122, 1719 (1975)

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Saâd Rahmane.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rahmane, S., Djouadi, M.A. Optoelectronic properties of ZnO thin films grown by radio frequency magnetron sputtering. J Mater Sci: Mater Electron 31, 17872–17878 (2020). https://doi.org/10.1007/s10854-020-04340-4

Download citation