Enhanced structure, dielectric, and thermal properties of attapulgite clay and hexagonal boron nitride admixture loaded polymer blends


Polyvinylidene fluoride (PVDF) and poly methyl methacrylate (PMMA) polymer blends were prepared by loading optimized quantity of attapulgite clay (AT) and hexagonal boron nitride (h-BN) nanopowder admixture. The crystalline phases were confirmed by X-ray diffraction patterns owing to the crystallinity of PVDF and h-BN. The shape and dimension of AT and h-BN fillers were confirmed by transmission electron microscope. The morphological changes were confirmed by scanning electron microscope, and the chemical composition of elements in the blends was confirmed by energy-dispersive spectroscopy. Frequency-dependent dielectric properties of the mixtures were explored as a function of temperature. The dielectric constant (εr) was improved (~ 6.87) when the AT and h-BN were loaded in an equal ratio (5:5 wt%). A low dissipation factor (tan δ) was obtained (~ 0.2) for the optimized loadings of AT and h-BN. Thermal stability of the blends was studied, and a delay in the degradation process at various steps was studied for AT/h-BN-incorporated PVDF/PMMA blends. The overall results suggest that the optimized loading of AT and h-BN significantly improved the dielectric and thermal properties of the PVDF/PMMA blends.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. 1.

    W. Xia, Z. Zhang, PVDF-based dielectric polymers and their applications in electronic materials. IET Nanodielectr. 1(1), 17–31 (2018)

    Google Scholar 

  2. 2.

    C.W. Reed, The influence of impurities on the dielectric losses of poly (2, 6-dimethyl-1, 4-phenylene ether), Dielectric properties of polymers (Springer, Boston, 1972), pp. 343–369

    Google Scholar 

  3. 3.

    M. Xiao, B.X. Du, Review of high thermal conductivity polymer dielectrics for electrical insulation. High Volt. 1(1), 34–42 (2016)

    Google Scholar 

  4. 4.

    P. Martins, A.C. Lopes, S. Lanceros-Mendez, Electroactive phases of poly (vinylidene fluoride): determination, processing and applications. Prog. Polym. Sci. 39(4), 683–706 (2016)

    Google Scholar 

  5. 5.

    R. Gregorio Jr., D.S. Borges, Effect of crystallization rate on the formation of the polymorphs of solution cast poly (vinylidene fluoride). Polymer 49(18), 4009–4016 (2008)

    CAS  Google Scholar 

  6. 6.

    L. Ruan, X. Yao, Y. Chang, L. Zhou, G. Qin, X. Zhang, Properties and applications of the β phase poly (vinylidene fluoride). Polymers 10(3), 228 (2018)

    Google Scholar 

  7. 7.

    M.M. Abolhasani, M. Naebe, A. Jalali-Arani, Q. Guo, Crystalline structures and α→ β and γ polymorphs transformation induced by nanoclay in PVDF-based nanocomposite. NANO 9(06), 1450065 (2014)

    Google Scholar 

  8. 8.

    M.M. Abolhasani, H. Fashandi, M. Naebe, Crystalline polymorph transition in poly (vinylidene fluoride) (PVDF)/acrylic rubber (ACM)/clay partially miscible hybrid. Polym. Bull. 73(1), 65–73 (2016)

    CAS  Google Scholar 

  9. 9.

    Q. Chi, Y. Zhou, C. Yin, Y. Zhang, C. Zhang, T. Zhang, Y. Feng, Y. Zhang, Q. Chen, A blended binary composite of poly (vinylidene fluoride) and poly (methyl methacrylate) exhibiting excellent energy storage performances. J. Mater. Chem. C 7(45), 14148–14158 (2019)

    CAS  Google Scholar 

  10. 10.

    D. Yang, H. Xu, W. Yu, J. Wang, X. Gong, Dielectric properties and thermal conductivity of graphene nanoplatelet filled poly (vinylidene fluoride) (PVDF)/poly (methyl methacrylate) (PMMA) blend. J. Mater. Sci. Mater. Electron. 28(17), 13006–13012 (2017)

    CAS  Google Scholar 

  11. 11.

    G.K. Narula, P.P.K. Rashmi, Investigations of solution-mixed PVDF/PMMA polyblends by thermal, structural, and dielectric techniques. J. Macromol. Sci. B 28(1), 25–49 (1989)

    Google Scholar 

  12. 12.

    B. Luo, X. Wang, H. Wang, Z. Cai, L. Li, P (VDF-HFP)/PMMA flexible composite films with enhanced energy storage density and efficiency. Compos. Sci. Technol. 151, 94–103 (2017)

    CAS  Google Scholar 

  13. 13.

    Y. Zhang, J. Zhao, H. Chu, X. Zhou, Y. Wei, Effect of modified attapulgite addition on the performance of a PVDF ultrafiltration membrane. Desalination 344, 71–78 (2014)

    CAS  Google Scholar 

  14. 14.

    Y. Wang, P. Liu, C. Yang, B. Mu, A. Wang, Improving capacitance performance of attapulgite/polypyrrole composites by introducing rhodamine B. Electrochim. Acta 89, 422–428 (2013)

    CAS  Google Scholar 

  15. 15.

    J. Chen, X. Huang, B. Sun, P. Jiang, Highly thermally conductive yet electrically insulating polymer/boron nitride nanosheets nanocomposite films for improved thermal management capability. ACS Nano 13(1), 337–345 (2018)

    CAS  Google Scholar 

  16. 16.

    J. Zhang, D. Liu, Q. Han, L. Jiang, H. Shao, B. Tang, W. Lei, T. Lin, C.H. Wang, Mechanically stretchable piezoelectric polyvinylidene fluoride (PVDF)/Boron nitride nanosheets (BNNSs) polymer nanocomposites. Composites B 175, 107157 (2019)

    CAS  Google Scholar 

  17. 17.

    A. Lund, C. Gustafsson, H. Bertilsson, R.W. Rychwalski, Enhancement of β phase crystals formation with the use of nanofillers in PVDF films and fibres. Compos. Sci. Technol. 71(2), 222–229 (2011)

    CAS  Google Scholar 

  18. 18.

    M. Hashem, M.F.A. Rez, H. Fouad, T. Elsarnagawy, M.A. Elsharawy, A. Umar, M. Assery, S.G. Ansari, Influence of titanium oxide nanoparticles on the physical and thermomechanical behavior of poly methyl methacrylate (PMMA): a denture base resin. Sci. Adv. Mater. 9(6), 938–944 (2017)

    CAS  Google Scholar 

  19. 19.

    J. Tang, B. Mu, L. Zong, M. Zheng, A. Wang, Fabrication of attapulgite/carbon composites from spent bleaching earth for the efficient adsorption of methylene blue. RSC Adv. 5(48), 38443–38451 (2015)

    CAS  Google Scholar 

  20. 20.

    Y. Liu, P. Liu, Z. Su, F. Li, F. Wen, Attapulgite–Fe3O4 magnetic nanoparticles via co-precipitation technique. Appl. Surf. Sci. 255(5), 2020–2025 (2008)

    CAS  Google Scholar 

  21. 21.

    L. Wang, J. Sheng, Preparation and properties of polypropylene/org-attapulgite nanocomposites. Polymer 46(16), 6243–6249 (2005)

    CAS  Google Scholar 

  22. 22.

    Y. Li, Z. Wang, X. Xie, J. Zhu, R. Li, T. Qin, Removal of norfloxacin from aqueous solution by clay-biochar composite prepared from potato stem and natural attapulgite. Coll. Surf. A 514, 126–136 (2017)

    CAS  Google Scholar 

  23. 23.

    B. Zhang, Q. Wu, H. Yu, C. Bulin, H. Sun, R. Li, X. Ge, R. Xing, High-efficient liquid exfoliation of boron nitride nanosheets using aqueous solution of alkanolamine. Nanoscale Res. Lett. 12(1), 1–7 (2017)

    Google Scholar 

  24. 24.

    W. Ma, J. Zhang, X. Wang, S. Wang, Effect of PMMA on crystallization behavior and hydrophilicity of poly (vinylidene fluoride)/poly (methyl methacrylate) blend prepared in semi-dilute solutions. Appl. Surf. Sci. 253(20), 8377–8388 (2007)

    CAS  Google Scholar 

  25. 25.

    N. Shukla, A. Shukla, A.K. Thakur, R.N.P. Choudhary, Low temperature ferroelectric behaviour of PVDF based composites. Indian J. Eng. Mater. Sci. 15, 126–132 (2008). https://nopr.niscair.res.in/handle/123456789/1959

    CAS  Google Scholar 

  26. 26.

    X. Hu, Z. Ding, L. Fei, Y. Xiang, Wearable piezoelectric nanogenerators based on reduced graphene oxide and in situ polarization-enhanced PVDF-TrFE films. J. Mater. Sci. 54(8), 6401–6409 (2019)

    CAS  Google Scholar 

  27. 27.

    J. Wang, D. Chen, Mechanical properties of natural rubber nanocomposites filled with thermally treated attapulgite. J. Nanomater. (2013). https://doi.org/10.1155/2013/496584

    Article  Google Scholar 

  28. 28.

    M. Li, N. Stingelin, J.J. Michels, M.J. Spijkman, K. Asadi, K. Feldman, P.W. Blom, D.M. de Leeuw, Ferroelectric phase diagram of PVDF: PMMA. Macromolecules 45(18), 7477–7485 (2012)

    CAS  Google Scholar 

  29. 29.

    Z. Ahmad, Polymer dielectric materials, Dielectric material (IntechOpen, London, 2012)

    Google Scholar 

  30. 30.

    E. Tuncer, Signs of low frequency dispersions in disordered binary dielectric mixtures (fifty–fifty). J. Phys. D 37(3), 334 (2004)

    CAS  Google Scholar 

  31. 31.

    R.J. Sengwa, S. Choudhary, P. Dhatarwal, Investigation of alumina nanofiller impact on the structural and dielectric properties of PEO/PMMA blend matrix-based polymer nanocomposites. Adv. Compos. Hybrid Mater. 2(1), 162–175 (2019)

    CAS  Google Scholar 

  32. 32.

    B. Chu, Y. Zhou, Energy storage properties of PVDF terpolymer/PMMA blends. High Volt. 1(4), 171–174 (2016)

    Google Scholar 

  33. 33.

    B. Hallouet, P. Desclaux, B. Wetzel, A.K. Schlarb, R. Pelster, Analysing dielectric interphases in composites containing nano-and micro-particles. J. Phys. D: Appl. Phys. 42(6), 064004 (2009)

    Google Scholar 

  34. 34.

    W. Wang, Y. Yang, The synergistic effects of the micro and nano particles in micro-nano composites on enhancing the resistance to electrical tree degradation. Sci. Rep. 7(1), 1–10 (2017)

    Google Scholar 

  35. 35.

    Y. Tang, P. Zhang, M. Zhu, J. Li, Y. Li, Z. Wang, L. Huang, Temperature effects on the dielectric properties and breakdown performance of h-BN/epoxy composites. Materials 12(24), 4112 (2019)

    CAS  Google Scholar 

  36. 36.

    Z. Wang, B. Wang, Z. Xu, Optically active helical polyurea@ attapulgite composites with high dielectric constant and low infrared emissivity. J. Mater. Sci. Mater. Electron. 27(10), 10276–10281 (2016)

    CAS  Google Scholar 

  37. 37.

    Y. Feng, J. Zhang, J. Hu, S. Li, C. Peng, Significantly elevated dielectric and energy storage traits in boron nitride filled polymer nano-composites with topological structure. Electron. Mater. Lett. 14(2), 187–197 (2018)

    CAS  Google Scholar 

  38. 38.

    M.I. Mohammed, S.S. Fouad, N. Mehta, Dielectric relaxation and thermally activated ac conduction in (PVDF)/(rGO) nano-composites: role of rGO over different fillers. J. Mater. Sci. Mater. Electron. 29(21), 18271–18281 (2018)

    CAS  Google Scholar 

  39. 39.

    S. Lokanatha, S. Bhattacherjee, Electrical properties of attapulgite. J. Mater. Sci. Lett. 3(4), 299–302 (1984)

    CAS  Google Scholar 

  40. 40.

    J. Chen, X. Xiong, Q. Zhang, L. Shui, S. Shen, H. Yang, Z. Zhu, F. Zhang, P(VDF-TrFE)/PMMA blended films with enhanced electrowetting responses and superior energy storage performance. Polymers 11(3), 526 (2019)

    Google Scholar 

  41. 41.

    T.G. Mofokeng, A.S. Luyt, V.P. Pavlović, V.B. Pavlović, D. Dudić, B. Vlahović, V. Djoković, Ferroelectric nanocomposites of polyvinylidene fluoride/polymethyl methacrylate blend and BaTiO3 particles: Fabrication of β-crystal polymorph rich matrix through mechanical activation of the filler. J. Appl. Phys. 115(8), 084109 (2014)

    Google Scholar 

  42. 42.

    D. Yang, H. Xu, Y. Wu, J. Wang, Z. Xu, W. Shi, Effect of hydroxylated multiwall carbon nanotubes on dielectric property of poly (vinylidene fluoride)/poly (methyl methacrylate)/hydroxylated multiwall carbon nanotubes blend. J. Polym. Res. 20(9), 236 (2013)

    Google Scholar 

  43. 43.

    W. Li, H. Li, Y.M. Zhang, Preparation and investigation of PVDF/PMMA/TiO2 composite film. J. Mater. Sci. 44(11), 2977–2984 (2009)

    CAS  Google Scholar 

  44. 44.

    F. Chen, D. Lou, J. Yang, M. Zhong, Mechanical and thermal properties of attapulgite clay reinforced polymethylmethacrylate nanocomposites. Polym. Adv. Technol. 22(12), 1912–1918 (2011)

    CAS  Google Scholar 

  45. 45.

    Z. Zhang, Q. Wu, K. Song, T. Lei, Y. Wu, Poly (vinylidene fluoride)/cellulose nanocrystals composites: rheological, hydrophilicity, thermal and mechanical properties. Cellulose 22(4), 2431–2441 (2015)

    CAS  Google Scholar 

  46. 46.

    J. Gu, X. Meng, Y. Tang, Y. Li, Q. Zhuang, J. Kong, Hexagonal boron nitride/polymethyl-vinyl siloxane rubber dielectric thermally conductive composites with ideal thermal stabilities. Composites A 92, 27–32 (2017)

    CAS  Google Scholar 

  47. 47.

    L. An, Y. Pan, X. Shen, H. Lu, Y. Yang, Rod-like attapulgite/polyimide nanocomposites with simultaneously improved strength, toughness, thermal stability and related mechanisms. J. Mater. Chem. 18(41), 4928–4941 (2008)

    CAS  Google Scholar 

  48. 48.

    E. Dhanumalayan, S. Kaleemulla, Investigation of structure, dielectric and thermal properties of hexagonal boron nitride dispersed polymer blends. J. Mater. Sci. Mater. Electron. 30(18), 17459–17468 (2019)

    CAS  Google Scholar 

  49. 49.

    F.C. Chiu, Y.J. Chen, Evaluation of thermal, mechanical, and electrical properties of PVDF/GNP binary and PVDF/PMMA/GNP ternary nanocomposites. Composites A 68, 62–71 (2015)

    CAS  Google Scholar 

Download references


The authors would like to thank Dr. Girish M. Joshi (Institute of Chemical Technology, Jalna, India) for providing dielectric characterization and Mr. P. Parthiban (University of Hyderabad) for providing optical surface profiler technique.

Author information



Corresponding author

Correspondence to S. Kaleemulla.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2939 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dhanumalayan, E., Kaleemulla, S. Enhanced structure, dielectric, and thermal properties of attapulgite clay and hexagonal boron nitride admixture loaded polymer blends. J Mater Sci: Mater Electron 31, 17828–17842 (2020). https://doi.org/10.1007/s10854-020-04337-z

Download citation