Impact of In3+ ion substitution on microstructural, magnetic and dielectric responses of nickel–cobalt spinel ferrite nanocrystals

Abstract

In this article, indium ion-doped mixed nickel–cobalt ferrite nanoparticles with chemical composition Ni0.7Co0.3InxFe2−xO4 (x = 0.00, 0.05, 0.10, 0.15 and 0.30) were synthesized using soft co-precipitation method. All prepared nanoferrites showed pure cubic spinel structure without containing any impurity phases as ensured by X-ray diffraction profiles. Mean diameters of nanocrystals were found within the range of 5 nm to 13 nm as estimated from Williamson–Hall (W–H) plots. Due to large size of In3+ ions, the compressive microstrain inside the nanocrystals became tensile in nature. Both the coercive field and saturation magnetization were reduced with increasing In3+ ion concentration in nickel–cobalt ferrite nanoparticles. Overall effective anisotropy was noticed to decrease with In3+ ion doping. This is due to the diamagnetic response of indium ions and weakening of magnetic interactions. Hopping of electrons between sublattice sites was the charge conduction process for all nanoferrites as confirmed by the AC conductivity measurement. Single semi-circular arc was observed in Cole–Cole plot for all samples which also revealed that the non-conductive grain boundaries was most effective in comparison to grains in dielectric responses. Decrement in the radius of semi-circles with respect to pristine sample also indicated the enhancement in DC conductivity with indium doping.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    F.G. da Silva, J. Depeyrot, A.F.C. Campos, R. Aquino, D. Fiorani, D. Peddis, J. Nanosci. Nanotechnol. 19, 4888–4902 (2019)

    Article  Google Scholar 

  2. 2.

    S.B. Darling, S.D. Bader, J. Mater. Chem. 15, 4189–4195 (2005)

    CAS  Article  Google Scholar 

  3. 3.

    D. Carta, M.F. Casula, A. Falqui, D. Loche, G. Mountjoy, C. Sangregorio, A. Corrias, J. Phys. Chem. C113, 8606 (2009)

    Google Scholar 

  4. 4.

    A.K. Das, R. Govindaraj, A. Srinivasan, J. Magn. Magn. Mater. 460, 243–252 (2018)

    Article  Google Scholar 

  5. 5.

    C. Caizar, Mater. Sci. Eng. B 100, 63 (2003)

    Article  Google Scholar 

  6. 6.

    D. Cao, L. Pan, J. Li, X. Cheng, Z. Zhao, J. Xu, Q. Li, X. Wang, S. Li, J. Wang, Q. Liu, Sci. Rep. 8, 7916 (2018)

    Article  Google Scholar 

  7. 7.

    Z.Z. Min Zhang, Q. Liu, P. Zhang, X. Tang, X. Zhu, Y. Sun, J. Dai, Adv. Mater. Sci. Eng. 609819, 1–10 (2013)

    Google Scholar 

  8. 8.

    K. Tanbir, L.K. Sharma, R.K. Aakash, R.K. Singh, S. Choubey, Mukherjee, J. Magn. Magn. Mater. 456, 118–123 (2018)

    CAS  Article  Google Scholar 

  9. 9.

    R. Mohan, M.P. Ghosh, S. Mukherjee, J. Magn. Magn. Mater. 458, 193–199 (2018)

    CAS  Article  Google Scholar 

  10. 10.

    A. Mumtaz, K. Maaz, B. Janjua, S.K. Hasanain, M.F. Bertino, J. Magn. Magn. Mater. 313, 266–272 (2007)

    CAS  Article  Google Scholar 

  11. 11.

    M.P. Ghosh, S. Mukherjee, J. Magn. Magn. Mater. 489, 165320 (2019)

    CAS  Article  Google Scholar 

  12. 12.

    M.P. Ghosh, S. Mukherjee, J. Am. Ceram. Soc. 102, 7509–7520 (2019)

    CAS  Article  Google Scholar 

  13. 13.

    M.P. Ghosh, S. Sharma, H.K. Satyapal, K. Tanbir, R.K. Singh, S. Mukherjee, Mater. Chem. Phys. 241, 122383 (2020)

    CAS  Article  Google Scholar 

  14. 14.

    M.P. Ghosh, S. Mukherjee, J. Magn. Magn. Mater. 498, 166185 (2020)

    Article  Google Scholar 

  15. 15.

    D. Bi-yu Chen, Z. Chen, Y. Kang, Zhang, J. Alloys Compd. 618, 222–226 (2015)

    Article  Google Scholar 

  16. 16.

    J.M.D. Coey, Magnetism and Magnetic Materials (Cambridge University Press, Cambridge, 2009)

    Google Scholar 

  17. 17.

    M. Hashim, S.E. Shirsath, S.S. Meena, R.K. Kotnala, S. Kumar, D. Ravinder, M. Raghasudha, P. Bhatt, E. Senturk, R. Alimuddin, I. Kumar, Magn. Magn. Mater. 381, 416–421 (2015)

    CAS  Article  Google Scholar 

  18. 18.

    P. Aakash, R. Nordblad, S. Mohan, Mukherjee, J. Magn. Magn. Mater. 441, 710 (2017)

    CAS  Article  Google Scholar 

  19. 19.

    R.D. Shannon, Acta Crystallogr. A 32, 751–767 (1976)

    Article  Google Scholar 

  20. 20.

    V.K. Lakhani, T.K. Pathak, N.H. Vasoya, K.B. Modi, Solid State Sci. 13, 539 (2011)

    CAS  Article  Google Scholar 

  21. 21.

    R. Sharma, P. Thakur, M. Kumar, P.B. Barman, P. Sharma, V. Sharma, Ceram. Int. 43, 13661 (2017)

    CAS  Article  Google Scholar 

  22. 22.

    S. Kumar, V. Singh, S. Aggarwal, U.K. Mandal, R.K. Kotnala, Mater. Sci. Eng. B 166, 76 (2010)

    CAS  Article  Google Scholar 

  23. 23.

    K.M. Batoo, D. Salah, G. Kumar, A. Kumar, M. Singh, M.A.E. Sadak, F.A. Mir, A. Imran, D.A. Jameel, J. Magn. Magn. Mater. 441, 91–97 (2016)

    Article  Google Scholar 

  24. 24.

    E.V. Gopalan, K.A. Malini, S. Saravanan, D.S. Kumar, Y. Yoshida, M.R. Anantharaman, J. Phys. D: Appl. Phys. 41, 185005 (2008)

    Article  Google Scholar 

  25. 25.

    A. Kumar, P. Sharma, D. Varshney, Ceram. Int. 40, 12855–12860 (2014)

    CAS  Article  Google Scholar 

  26. 26.

    C.G. Koops, Phys. Rev. 83, 121 (1951)

    CAS  Article  Google Scholar 

  27. 27.

    H.M.T. Farid, I. Ahmad, I. Ali, A. Mahmood, S.M. Ramay, Eur. Phys. J. Plus 133, 41 (2018)

    Article  Google Scholar 

  28. 28.

    E.J.W. Verwey, J.H. De Boer, Recl. Trav. Chim. Pays-Bas 55, 531–540 (1936)

    CAS  Article  Google Scholar 

  29. 29.

    Z.Z. Lazarevic, C. Jovalekic, D.L. Sekulic, A. Milutinovic, S. Balos, M. Slankamenac, N.Z. Romcevic, Mater. Res. Bull. 48, 4368–4378 (2013)

    CAS  Article  Google Scholar 

  30. 30.

    D. Varshney, K. Verma, Mater. Chem. Phys. 140, 412–418 (2013)

    CAS  Article  Google Scholar 

  31. 31.

    K. Tanvir, M.P. Ghosh, R.K. Singh, S. Mukherjee, J. Mater. Sci.: Mater. Electron. 31, 3529–3538 (2020)

    Google Scholar 

  32. 32.

    M.P. Aakash, S. Ghosh, Mukherjee, Appl. Phys. A 125, 853 (2019)

    CAS  Article  Google Scholar 

  33. 33.

    N.H. Vasoya, V.K. Lakhani, P.U. Sharma, K.B. Modi, R. Kumar, H.H. Joshi, J. Phys.: Condens. Matter. 18, 8063–8092 (2006)

    CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Samrat Mukherjee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ghosh, M.P., Kumar, P., Kar, M. et al. Impact of In3+ ion substitution on microstructural, magnetic and dielectric responses of nickel–cobalt spinel ferrite nanocrystals. J Mater Sci: Mater Electron 31, 17762–17772 (2020). https://doi.org/10.1007/s10854-020-04330-6

Download citation