Skip to main content

Advertisement

Log in

Engineering the energy bandgap of lead cobalt sulfide quantum dots for visible light optoelectronics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The energy bandgap of ternary alloyed lead cobalt sulfide quantum dots has been engineered for visible light optoelectronic applications. Ternary Pb0.8Co0.2S QDs were synthesized in situ onto TiO2 electrodes using a sub-sequential chemical bath deposition method up to 7 times. The surface morphology of the prepared alloyed Pb0.8Co0.2S QDs photoanodes was characterized using a transmission electron microscope. The X-ray diffraction technique was used to study the structural properties of the prepared alloyed photoanodes. The optical properties were characterized using a UV–visible–NIR spectrophotometer in the visible region range. The absorption of the prepared photoanodes increases as the no. of deposition times rises up to 7. Besides, the energy bandgap of the alloyed photoanodes is red-shifted from 3.15 eV (393 nm) to 1.68 eV (738 nm). These bandgap red shifts are mainly attributed to the quantum confinement effect. Based on optical properties measurements, the prepared ternary alloyed QDs could be utilized effectively in visible light optoelectronic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A. Badawi, N. Al-Hosiny, S. Abdallah, The photovoltaic performance of CdS quantum dots sensitized solar cell using graphene/TiO2 working electrode. Superlattices Microstruct. 81, 88–96 (2015)

    Article  CAS  Google Scholar 

  2. A. Badawi, Effect of the non-toxic Ag2S quantum dots size on their optical properties for environment-friendly applications. Physica E 109, 107–113 (2019)

    Article  CAS  Google Scholar 

  3. P. Devi, S. Saini, K.-H. Kim, The advanced role of carbon quantum dots in nanomedical applications. Biosens. Bioelectron. 141, 111158 (2019)

    Article  CAS  Google Scholar 

  4. D. Asik, M.B. Yagci, F. Demir Duman, H. Yagci Acar, One step emission tunable synthesis of PEG coated Ag2S NIR quantum dots and the development of receptor targeted drug delivery vehicles thereof. J Mater Chem B 4(11), 1941–1950 (2016)

    Article  CAS  Google Scholar 

  5. A. Badawi, N. Al-Hosiny, S. Abdallah, S. Negm, H. Talaat, Tuning photocurrent response through size control of CdTe quantum dots sensitized solar cells. Sol. Energy 88, 137–143 (2013)

    Article  CAS  Google Scholar 

  6. A. Badawi, N. Al-Hosiny, S. Abdallah, H. Talaat, Tuning photocurrent response through size control of CdSe quantum dots sensitized solar cells. Mater. Sci. Pol. 31(1), 6–13 (2013)

    Article  CAS  Google Scholar 

  7. A. Badawi, N. Al-Hosiny, A. Merazga, A.M. Albaradi, S. Abdallah, H. Talaat, Study of the back recombination processes of PbS quantum dots sensitized solar cells. Superlattices Microstruct. 100, 694–702 (2016)

    Article  CAS  Google Scholar 

  8. N. Al-Hosiny, S. Abdallah, A. Badawi, K. Easawi, H. Talaat, The photovoltaic performance of alloyed CdTexS1−x quantum dots sensitized solar cells. Mater. Sci. Semicond. Process. 26, 238–243 (2014)

    Article  CAS  Google Scholar 

  9. A. Badawi, Tuning the energy band gap of ternary alloyed Cd1-xPbxS quantum dots for photovoltaic applications. Superlattices Microstruct. 90, 124–131 (2016)

    Article  CAS  Google Scholar 

  10. A. Badawi, A.H. Al-Otaibi, A.M. Albaradi, N. Al-Hosiny, S.E. Alomairy, Tailoring the energy band gap of alloyed Pb1−xZnxS quantum dots for photovoltaic applications. J. Mater. Sci. Mater. Electron. 29(24), 20914–20922 (2018)

    Article  CAS  Google Scholar 

  11. A. Badawi, Decrease of back recombination rate in CdS quantum dots sensitized solar cells using reduced graphene oxide. Chin. Phys. B 24(4), 47205–047205 (2015)

    Article  Google Scholar 

  12. A. Khalid, K. Easawi, S. Abdallah, M.G. El-Shaarawy, S. Negm, H. Talaat, Effect of CdS quantum dots size on Thermal and photovoltaic parameters of quantum dots sensitized solar cells. IOP Conf. Ser. 762, 012007 (2020)

    Article  CAS  Google Scholar 

  13. Y. Zhang, G. Hong, Y. Zhang, G. Chen, F. Li, H. Dai, Q. Wang, Ag2S quantum dot: a bright and biocompatible fluorescent nanoprobe in the second near-infrared window. ACS Nano 6(5), 3695–3702 (2012)

    Article  CAS  Google Scholar 

  14. A. Badawi, W.O. Al-Gurashi, A.M. Al-Baradi, N. Al-Hosiny, Alloying cadmium cobalt sulfide quantum dots for solar cells applications. Mater. Sci. Semicond. Process. 95, 1–6 (2019)

    Article  CAS  Google Scholar 

  15. A. Badawi, Tunable energy band gap of Pb1-xCoxS quantum dots for optoelectronic applications. Superlattices Microstruct. 125, 237–246 (2019)

    Article  CAS  Google Scholar 

  16. M. Azhin, S. Salah Raza, A. Omed Gh, Synthesis of very-fine PbS nanoparticles dispersed homogeneously in MC matrix: Effect of concentration on the structural and optical properties of host polymer. Mater. Res. Exp. 6, 115332 (2019)

    Article  Google Scholar 

  17. E. Rabinovich, E. Wachtel, G. Hodes, Chemical bath deposition of single-phase (Pb, Cd)S solid solutions. Thin Solid Films 517(2), 737–744 (2008)

    Article  CAS  Google Scholar 

  18. N.J. Smith, K.J. Emmett, S.J. Rosenthal, Photovoltaic cells fabricated by electrophoretic deposition of CdSe nanocrystals. Appl. Phys. Lett. 93, 043504 (2008)

    Article  Google Scholar 

  19. D. Sharma, R. Jha, S. Kumar, Quantum dot sensitized solar cell: Recent advances and future perspectives in photoanode. Sol. Energy Mater. Sol. Cells 155, 294–322 (2016)

    Article  CAS  Google Scholar 

  20. Y.H. Lee, S.H. Im, J.-H. Lee, S.I. Seok, Porous CdS-sensitized electrochemical solar cells. Electrochim. Acta 56(5), 2087–2091 (2011)

    Article  CAS  Google Scholar 

  21. X. Pan, Z. Ye, J. Li, X. Gu, Y. Zeng, H. He, L. Zhu, Y. Che, Fabrication of Sb-doped p-type ZnO thin films by pulsed laser deposition. Appl. Surf. Sci. 253(11), 5067–5069 (2007)

    Article  CAS  Google Scholar 

  22. G.-L. Tan, L. Liu, W. Wu, Mid-IR band gap engineering of CdxPb1−xS nanocrystals by mechanochemical reaction. AIP Adv. 4(6), 067107 (2014)

    Article  Google Scholar 

  23. A. Badawi, A.M. Al-Baradi, A.A. Atta, S.A. Algarni, A.S.A. Almalki, S.S. Alharthi, Graphene/TiO2 nanocomposite electrodes sensitized with tin sulfide quantum dots for energy issues. Physica E 121, 114121 (2020)

    Article  CAS  Google Scholar 

  24. S. Wang, W. Dong, X. Fang, S. Wu, R. Tao, Z. Deng, J. Shao, L. Hu, J. Zhu, CdS and CdSe quantum dot co-sensitized nanocrystalline TiO2 electrode: Quantum dot distribution, thickness optimization, and the enhanced photovoltaic performance. J. Power Sources 273, 645–653 (2015)

    Article  CAS  Google Scholar 

  25. R. Premarani, J. Jebaraj Devadasan, S. Saravanakumar, R. Chandramohan, T. Mahalingam, Structural, optical and magnetic properties of Ni-doped CdS thin films prepared by CBD. J. Mater. Sci. Mater. Electron. 26(4), 2059–2065 (2015)

    Article  CAS  Google Scholar 

  26. A. Badawi, W.O. Al-Gurashi, A.M. Al-Baradi, F. Abdel-Wahab, Photoacoustic spectroscopy as a non-destructive technique for optical properties measurements of nanostructures. Optik 201, 163389 (2020)

    Article  CAS  Google Scholar 

  27. A. Badawi, Photoacoustic study of alloyed Cd1−xPbxS quantum dots sensitized solar cells electrodes. J. Mater. Sci. Mater. Electron. 27(8), 7899–7907 (2016)

    Article  CAS  Google Scholar 

  28. E. Kuantama, D.-W. Han, Y.-M. Sung, J.-E. Song, C.-H. Han, Structure and thermal properties of transparent conductive nanoporous F:SnO2 films. Thin Solid Films 517(14), 4211–4214 (2009)

    Article  CAS  Google Scholar 

  29. N.B. Rahna, V. Kalarivalappil, M. Nageri, S.C. Pillai, S.J. Hinder, V. Kumar, B.K. Vijayan, Stability studies of PbS sensitised TiO2 nanotube arrays for visible light photocatalytic applications by X-ray photoelectron spectroscopy (XPS), Materials Science in Semiconductor Processing 42. Part 3, 303–310 (2016)

    Google Scholar 

  30. A.N. Fouda, M. Marzook, H.M. Abd-El-Khalek, S. Ahmed, E.A. Eid, A.B. El-Basaty, Structural and optical characterization of chemically deposited PbS thin films. Silicon 9, 1–8 (2016)

    Google Scholar 

  31. S. Sambasivam, D. PaulJoseph, J.G. Lin, C. Venkateswaran, Doping induced magnetism in Co–ZnS nanoparticles. J. Solid State Chem. 182(10), 2598–2601 (2009)

    Article  CAS  Google Scholar 

  32. Y.-C. Zeng, S.-F. Sie, N. Suriyawong, B.A. Aragaw, J.-B. Shi, M.-W. Lee, Lead tin sulfide (Pb1−xSnxS) nanocrystals: a potential solar absorber material. J. Colloid Interface Sci. 488, 246–250 (2017)

    Article  CAS  Google Scholar 

  33. K.J. Rakesh, K. Aloke, H.K. Sehgal, Size dependence of optical properties in solution-grown Pb 1–x Fe x S nanoparticle films. Nanotechnology 14(7), 809 (2003)

    Article  Google Scholar 

  34. P.L. Nichols, Z. Liu, L. Yin, S. Turkdogan, F. Fan, C.Z. Ning, CdxPb1–xS alloy nanowires and heterostructures with simultaneous emission in mid-infrared and visible wavelengths. Nano Lett. 15(2), 909–916 (2015)

    Article  CAS  Google Scholar 

  35. P. Boon-on, S.-W. Lien, T.-R. Chang, J.-B. Shi, M.-W. Lee, Band gap engineered ternary semiconductor PbxCd1-xS: Nanoparticle-sensitized solar cells with an efficiency of 8.5% under 1% sun: a combined theoretical and experimental study. Progress Photovolt. 6, 1–14 (2020)

    Google Scholar 

  36. I. Devadoss, P. Sakthivel, Effect of Mg on Cd09-xZn01S nanoparticles for optoelectronic applications. Appl. Phys. A 126(4), 315 (2020)

    Article  CAS  Google Scholar 

  37. N.F. Mott, E.A. Davis, Electronic processes in non-crystalline materials, 2nd edn. (Oxford University Press, Oxford, 1979)

    Google Scholar 

  38. O. Madelung, Semiconductors: data Handbook, 3rd edn. (Springer, Berlin, 2004)

    Book  Google Scholar 

  39. S.S. Kamble, A. Sikora, S.L. Deshmukh, S.T. Pawar, G.T. Chavan, D.P. Dubal, N.B. Chaure, N.N. Maldar, L.P. Deshmukh, The optical and electrical transport studies of ZnxCo1−xS thin films. J. Mater. Sci. 27(12), 12302–12311 (2016)

    CAS  Google Scholar 

Download references

Acknowledgements

Taif University is thanked for facilitating this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Badawi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Badawi, A. Engineering the energy bandgap of lead cobalt sulfide quantum dots for visible light optoelectronics. J Mater Sci: Mater Electron 31, 17726–17735 (2020). https://doi.org/10.1007/s10854-020-04327-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04327-1

Navigation