The effect of morphology-dependent surface charges of iron oxide on the visible light photocatalytic degradation of methylene blue dye


The iron oxide powder was prepared using the surfactant Pluronic P123 with either iron nitrate (N series) or iron chloride (C series) as the raw material for iron source, under different pH conditions. The crystal phase, particle size, surface charge, and morphology of the iron oxide materials prepared by hydrothermal route were found to be highly influenced by the raw materials, and pH conditions of the preparation medium. Irrespective of iron source used, the formation of nanorods was favorable in the case of the basic medium. The iron oxide nanorods (NPBC) with high negative surface charges (− 20.8 mV) outperformed the other iron oxide samples having different morphologies like hexagonal (− 13.8 mV), oval (− 13.4 mV), and agglomerated nanoparticles (+ 12 mV) in the methylene blue degradation with ~ 86% of degradation observed for a very low catalyst loading of 10 mg. A methylene blue degradation of 69, 59, and 39% were observed for hexagonal, oval, and agglomerated nanoparticles, respectively, for the similar amount of catalytic loading. The sample NPBC exhibits a degradation rate constant value of 3.27 × 10–4 s−1 which was 2.9 times higher than the agglomerated nanoparticles with a rate constant value of 1.14 × 10–4 s−1 and the reasons are discussed.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    N. Raghavan, S. Thangavel, G. Venugopal, Enhanced photocatalytic degradation of methylene blue by reduced graphene-oxide/titanium dioxide/zinc oxide ternary nanocomposites. Mater. Sci. Semicond. Process. 30, 321–329 (2015).

    CAS  Article  Google Scholar 

  2. 2.

    M.A. Rauf, S.S. Ashraf, Fundamental principles and application of heterogeneous photocatalytic degradation of dyes in solution. Chem. Eng. J. 151(1–3), 10–18 (2009).

    CAS  Article  Google Scholar 

  3. 3.

    A. Nezamzadeh-Ejhieh, M. Khorsandi, Heterogeneous photodecolorization of eriochrome black T using Ni/P zeolite catalyst. Desalination 262, 79–85 (2010).

    CAS  Article  Google Scholar 

  4. 4.

    P. Mohammadyari, A. Nezamzadeh-Ejhieh, Supporting of mixed ZnS–NiS semiconductors onto clinoptilolite nano-particles to improve its activity in photodegradation of 2-nitrotoluene. RSC Adv. 5, 75300–75310 (2015).

    CAS  Article  Google Scholar 

  5. 5.

    S. Bharathi, D. Nataraj, D. Mangalaraj, Y. Masuda, K. Senthil, K. Yong, Highly mesoporous α-Fe2O3 nanostructures: preparation, characterization and improved photocatalytic performance towards rhodamine B (RhB). J. Phys. D. 43, 015501 (2010).

    CAS  Article  Google Scholar 

  6. 6.

    X. Zhou, H. Yang, C. Wang, X. Mao, Y. Wang, Y. Yang, G. Liu, Visible light induced photocatalytic degradation of rhodamine B on one-dimensional iron oxide particles. J. Phys. Chem. C. 114, 17051–17061 (2010).

    CAS  Article  Google Scholar 

  7. 7.

    Y.H. Chen, C.C. Lin, Effect of nano-hematite morphology on photocatalytic activity. Phys. Chem. Miner. 41(10), 727–736 (2014).

    CAS  Article  Google Scholar 

  8. 8.

    J. Yu, X. Yu, B. Huang, X. Zhang, Y. Dai, Hydrothermal synthesis and visible-light photocatalytic activity of novel cage-like ferric oxide hollow spheres. Cryst. Growth Design. 9, 1474–1480 (2009).

    CAS  Article  Google Scholar 

  9. 9.

    S. Yan, Q. Wu, A novel structure for enhancing the sensitivity of gas sensors-α-Fe2O3 nanoropes containing a large amount of grain boundaries and their excellent ethanol sensing performance. J. Mater. Chem. A. 3, 5982–5990 (2015).

    CAS  Article  Google Scholar 

  10. 10.

    S. Shivakumara, T.R. Penki, N. Munichandraiah, Synthesis and characterization of porous flowerlike α-Fe2O3 nanostructures for supercapacitor application. ECS Electrochem. Lett. 2, A60–A62 (2013).

    CAS  Article  Google Scholar 

  11. 11.

    C. Wu, P. Yin, X. Zhu, C. Ouyang, Y. Xie, Synthesis of hematite (α-Fe2O3) nanorods: diameter-size and shape effects on their applications in magnetism, lithium ion battery, and gas sensors. J. Phys. Chem. B. 110, 17806–17819 (2006).

    CAS  Article  Google Scholar 

  12. 12.

    C. Park, J. Jung, C.W. Lee, J. Cho, Synthesis of mesoporous α-Fe2O3 nanoparticles by non-ionic soft template and their applications to heavy oil upgrading. Sci. Rep. 6, 1–9 (2016).

    CAS  Article  Google Scholar 

  13. 13.

    M.M. Rafi, K.S.Z. Ahmed, K.P. Nazeer, D. Siva Kumar, M. Thamilselvan, Synthesis, characterization and magnetic properties of hematite (α-Fe2O3) nanoparticles on polysaccharide templates and their antibacterial activity. Appl. Nanosci. 5, 515–520 (2015).

    CAS  Article  Google Scholar 

  14. 14.

    S. Yu, Q. Yao, G. Zhou, S. Fu, Preparation of hollow core/shell microspheres of hematite and its adsorption ability for samarium. ACS Appl. Mater. Interfaces (2014).

    Article  Google Scholar 

  15. 15.

    R.A. Al-Wardy, H.A.T. Al-Ogaili, S.I. Abbas, Study of annealing temperature on prepared iron oxide nanoparticles by sol-gel method. Int. J. Innov. Res. Sci. Eng. Technol. 5(4), 5560–5567 (2016)

    Google Scholar 

  16. 16.

    R. Al-gaashani, S. Radiman, N. Tabet, A.R. Daud, Rapid synthesis and optical properties of hematite (α-Fe2O3) nanostructures using a simple thermal decomposition method. J. Alloys Compd. 550, 395–401 (2013).

    CAS  Article  Google Scholar 

  17. 17.

    S. Sankadiya, N. Oswal, P. Jain, N. Gupta, Synthesis and characterization of Fe2O3 nanoparticles by simple precipitation method. AIP Conf. Proc. (2016).

    Article  Google Scholar 

  18. 18.

    M.C. Mascolo, Y. Pei, T.A. Ring, Room temperature co-precipitation synthesis of magnetite nanoparticles in a large pH window with different bases. Materials 6, 5549–5567 (2013).

    CAS  Article  Google Scholar 

  19. 19.

    D. Ramimoghadam, M. Zobir Bin Hussein, Y.H. Taufiq-Yap, The effect of sodium dodecyl sulfate (SDS) and cetyltrimethylammonium bromide (CTAB) on the properties of ZnO synthesized by hydrothermal method. Int. J. Mol. Sci. 13, 13275–13293 (2012).

    CAS  Article  Google Scholar 

  20. 20.

    N.D. Cuong, T.T. Hoa, D.Q. Khieu, N.D. Hoa, N. Van Hieu, Gas Sensor based on nanoporous hematite nanoparticles: effect of synthesis pathways on morphology and gas sensing properties. Curr. Appl. Phys. 12, 1355–1360 (2012).

    Article  Google Scholar 

  21. 21.

    H.-G. Kim, Oh Chul, Y.-H. Lee, S.-H. Park, Oh Seong-Geun, Preparation of echinoid-like aggregated hematite particles by forced hydrolysis with PEO-PPO-PEO triblock copolymers. J. Ceram. Process. Res. 8(3), 177–183 (2007)

    Google Scholar 

  22. 22.

    M.R. Shenoy, S. Ayyasamy, M.V. Reddy, K. Govindan, T. Saravanakumar, T. Selvaraju, A.C. Jeyaramane, S. Adams, Preparation and characterization of porous iron oxide dendrites for photocatalytic application. Solid State Sci. 95(2019), 105939 (2019).

    CAS  Article  Google Scholar 

  23. 23.

    H. Liu, J. Zou, Y. Ding, T. Xin, B. Liu, Y. Wang, Flute-like Fe2O3 nanorods with modulating porosity for high performance anode materials in lithium ion batteries. Chemistry Select 4, 3681–3689 (2019).

    CAS  Article  Google Scholar 

  24. 24.

    S.W. Lee, S. Surabhi, R. Kuchi, Y. Sohn, J. Jeong, Magnetic/catalytic properties and strain induced structural phase transformation from β-FeOOH to porous α-Fe2O3 nanorods. J. Alloys Compds. 771, 131–139 (2019).

    CAS  Article  Google Scholar 

  25. 25.

    K. Govindan, H.T. Chandran, M. Raja, S.U. Maheswari, M. Rangarajan, Electron scavenger-assisted photocatalytic degradation of amido black 10B dye with Mn3O4 nanotubes: a response surface methodology study with central composite design. J. Photochem. Photobiol. A. 341, 146–156 (2017).

    CAS  Article  Google Scholar 

  26. 26.

    Y.X. Yang, M.L. Liu, H. Zhu, Y.R. Chen, G.J. Mu, X.N. Liu, Y.Q. Jia, Preparation, characterization, magnetic property, and mössbauer spectra of the β-FeOOH nanoparticles modified by nonionic surfactant. J. Magnet. Magnet. Mater. 320, 132–136 (2008).

    CAS  Article  Google Scholar 

  27. 27.

    B. Saravanakumar, B. Jansi Rani, G. Ravi, A. Sakunthala, R. Yuvakkumar, Influence of reducing agent concentration on the structure, morphology and ferromagnetic properties of hematite (α-Fe2O3) nanoparticles. J. Mater. Sci. 28, 8093–8100 (2017).

    CAS  Article  Google Scholar 

  28. 28.

    M. Gotic, S. Music, Mössbauer, FT-IR and FE SEM investigation of iron oxides precipitated from FeSO4 solutions. J. Mol. Struct. 836, 445–453 (2007).

    CAS  Article  Google Scholar 

  29. 29.

    Y. Su, J. Wang, H. Liu, FTIR spectroscopic study on effects of temperature and polymer composition on the structural properties of PEO-PPO-PEO block copolymer micelles. Langmuir 18, 5370–5374 (2002).

    CAS  Article  Google Scholar 

  30. 30.

    X. Wei, J. Su, X.-H. Li, J.-S. Chen, Chemical “top-down” synthesis of amphiphilic superparamagnetic Fe3O4 nanobelts from exfoliated FeOCl layers. Dalton Trans. 43, 16173 (2014).

    CAS  Article  Google Scholar 

  31. 31.

    A. Kaur, D. Goyal, R. Kumar, Surfactant mediated interaction of vancomycin with silver nanoparticles. Appl. Surf. Sci. 449, 23–30 (2018).

    CAS  Article  Google Scholar 

  32. 32.

    D. Mishra, R. Arora, S. Lahiri, S.S. Amritphale, N. Chandra, Synthesis and characterization of iron oxide nanoparticles by solvothermal method. Protect. Met. Phys. Chem. Surf. 50, 628–631 (2014).

    CAS  Article  Google Scholar 

  33. 33.

    E. Aivazoglou, A.E. Metaxa, E. Hristoforou, Microwave-assisted synthesis of iron oxide nanoparticles in biocompatible organic environment. AIP Adv. 8, 048201 (2018).

    CAS  Article  Google Scholar 

  34. 34.

    D. Ková, A. Malá, J. MlIochová, I.M. Kalina, Z. Fohlerová, A. HlaváIek, Z. Farka, I.P. Skládal, Z. StarIuk, R. Jilík, O. Slabý, J. Hubálek, Preparation and characterisation of highly stable iron oxide nanoparticles for magnetic resonance imaging. J. Nanomater. 2017, 1–9 (2017).

    CAS  Article  Google Scholar 

  35. 35.

    M. Baalousha, J.R. Lead, Rationalizing nanomaterial sizes measured by atomic force microscopy, flow field-flow fractionation, and dynamic light scattering: sample preparation, polydispersity, and particle structure. Environ. Sci. Technol. 46, 6134–6142 (2012).

    CAS  Article  Google Scholar 

  36. 36.

    F. Azeez, E. Al-hetlani, M. Arafa, Y. Abdelmonem, A.A. Nazeer, M.O. Amin, M. Madkour, The effect of surface charge on photocatalytic degradation of methylene blue dye using chargeable titania nanoparticles. Sci. Rep. 8, 7104 (2018).

    CAS  Article  Google Scholar 

  37. 37.

    M. Thommes, Physical adsorption characterization of nanoporous materials. Chem. Ingenieur Tech. (2010).

    Article  Google Scholar 

  38. 38.

    Z.A. Alothman, A review: fundamental aspects of silicate mesoporous materials. Materials 5, 2874–2902 (2016).

    CAS  Article  Google Scholar 

  39. 39.

    D.L. Liao, G.S. Wu, B.Q. Liao, Zeta potential of shape-controlled TiO2 nanoparticles with surfactants. Colloids Surf. A 348(1–3), 270–275 (2009).

    CAS  Article  Google Scholar 

  40. 40.

    A. Chaudhary, A. Mohammad, S.M. Mobin, Facile synthesis of phase pure ZnAl2O4 nanoparticles for effective photocatalytic degradation of organic dyes. Mater. Sci. Eng. B. 227, 136–144 (2018).

    CAS  Article  Google Scholar 

  41. 41.

    T.K. Van, H.G. Cha, C.K. Nguyen, S.W. Kim, M.H. Jung, Y.S. Kang, Nanocystals of hematite with unconventional shape-truncated hexagonal bipyramid and its optical and magnetic properties. Crystal Growth Design. 12, 862–868 (2012).

    CAS  Article  Google Scholar 

  42. 42.

    J. Esmaili-Hafshejani, A. Nezamzadeh-Ejhieh, Increased photocatalytic activity of Zn(II)/Cu(II) oxides and sulfides by coupling and supporting them onto clinoptilolite nanoparticles in the degradation of benzophenone aqueous solution. J. Hazard. Mater. 316, 194–203 (2016).

    CAS  Article  Google Scholar 

  43. 43.

    B. Sun, J. Horvat, H.S. Kim, W.S. Kim, J. Ahn, G. Wang, Synthesis of mesoporous α-Fe2O3 nanostructures for highly sensitive gas sensors and high capacity anode materials in lithium ion batteries. J. Phys. Chem. C. 114, 18753–18761 (2010).

    CAS  Article  Google Scholar 

  44. 44.

    X. Zhang, J. Qin, Y. Xue, P. Yu, B. Zhang, L. Wang, R. Liu, Effect of aspect ratio and surface defects on the photocatalytic activity of ZnO nanorods. Sci. Rep. (2014).

    Article  Google Scholar 

  45. 45.

    H. Wu, L. Wang, Phase transformation-induced crystal plane effect of iron oxide micropine dendrites on gaseous toluene photocatalytic oxidation. Appl. Surf. Sci. 288, 398–404 (2014).

    CAS  Article  Google Scholar 

  46. 46.

    Z. Jiang, D. Jiang, W. Wei, Z. Yan, J. Xie, Natural carbon nanodots assisted development of size-tunable metal (Pd, Ag) nanoparticles grafted on bionic dendritic α-Fe2O3 for cooperative catalytic applications. J. Mater. Chem. A. 3, 23607–23620 (2015).

    CAS  Article  Google Scholar 

  47. 47.

    Y. Zhang, B. Deng, T. Zhang, D. Gao, A.W. Xu, Shape effects of Cu2O polyhedral microcrystals on photocatalytic activity. J. Phys. Chem. C 114(11), 5073–5079 (2010).

    CAS  Article  Google Scholar 

  48. 48.

    N. Wang, K. Cheng, Z.F. Xu, P. Li, G. Geng, C. Chen, D. Wang, P. Chen, M. Liu, High-performance natural-sunlight-driven Ag/AgCl photocatalysts with a cube-like morphology and blunt edges via a bola-type surfactant-assisted synthesis. Phys. Chem. Chem. Phys. (2020).

    Article  Google Scholar 

  49. 49.

    N. Wu, J. Wang, D. Tafen, N.H. Wang, J.-G. Zheng, J.P. Lewis, X. Liu, S.S. Leonard, A. Manivannan, Shape-enhanced photocatalytic activity of single-crystalline anatase TiO2 (101) nanobelts. J. Am. Chem. Soc. 132(19), 6679–6685 (2010).

    CAS  Article  Google Scholar 

Download references


One of the author Dr. A. Sakunthala, thanks the Department of Science and Technology, Science and Engineering Research Board (DST-SERB) (Project.No. EMR/2017/003227 dated July 16, 2018), Government of India, for the funding. The authors thank the Karunya Institute of Technology and Sciences, Coimbatore, 641 114, India, for the research facilities provided.


The study was funded by Department of Science and Technology, Science and Engineering Research Board (DST-SERB), (EMR/2017/003227 dated July 16, 2018), Government of India and Karunya Institute of Technology and Sciences, Coimbatore, 641 114, India, for the research facilities.

Author information




AS guided and mentored the research. MRS synthesized all materials and carried out the laboratory work. All authors discussed the results.

Corresponding author

Correspondence to Sakunthala Ayyasamy.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interests to this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 2921 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shenoy, M.R., Ayyasamy, S., Reddy, M.V.V. et al. The effect of morphology-dependent surface charges of iron oxide on the visible light photocatalytic degradation of methylene blue dye. J Mater Sci: Mater Electron 31, 17703–17717 (2020).

Download citation