Skip to main content
Log in

Enhanced piezoelectric properties of 0.49Pb(Ni,Nb)O3–0.51Pb(Hf,Ti)O3 ceramics by ion pair doping

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Based on the relaxation ferroelectric of 0.49Pb(Ni1/3Nb2/3)O3–0.51Pb(Hf0.3Ti0.7)O3 (0.49PNN–0.51PHT), the method generating structural defects by Li+ and Al3+ ion pair doping was proposed to improve the piezoelectric property. Results showed that the ion pairs facilitated the increase of tetragonal phase content in perovskite structure, and caused larger lattice distortion along the [001] direction. A high piezoelectric coefficient of d33 = 1040 pC/N was achieved for the 0.49PNN–0.51PHT ceramic when the doping content was 0.4 at.%, with better piezoelectric response. Also, the reason improving piezoelectric properties was further analyzed by impedance spectra. The findings indicate that constructing such defect pairs can efficiently improve the piezoelectric properties of relaxed ferroelectrics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. F. Li, D. Lin, Z. Chen, Z. Cheng, J. Wang, C. Li, Z. Xu, Q. Huang, X. Liao, L.Q. Chen, T.R. Shrout, S. Zhang, Ultrahigh piezoelectricity in ferroelectric ceramics by design. Nat. Mater. 17, 349–354 (2018)

    Article  CAS  Google Scholar 

  2. S. Zhang, F. Li, X. Jiang, J. Kim, J. Luo, X. Geng, Advantages and challenges of relaxor-PbTiO3 ferroelectric crystals for electroacoustic transducers: a review. Prog. Mater. Sci. 68, 1–66 (2015)

    Article  CAS  Google Scholar 

  3. D.W. Wang, M.S. Cao, Y. Jie, Q.L. Zhao, H.B. Li, D.Q. Zhang, S. Agathopoulos, Enhanced piezoelectric and ferroelectric properties of Nb2O5 modified lead zirconate titanate-based composites. J. Am. Ceram. Soc. 94, 647–650 (2011)

    Article  CAS  Google Scholar 

  4. E. Sun, W. Cao, Relaxor-based ferroelectric single crystals: growth, domain engineering, characterization and applications. Prog. Mater. Sci. 65, 124–210 (2014)

    Article  CAS  Google Scholar 

  5. C. He, Z. Wang, X. Li, Y. Liu, D. Shen, T. Li, X. Long, Synthesis, structure and electric properties of Pb(Yb1/2Nb1/2)O3–Pb(Mg1/3Nb2/3)O3–PbTiO3 ternary ceramics. J. Phys. D 45, 105305 (2012)

    Article  Google Scholar 

  6. Y. Guo, K.I. Kakimoto, H. Ohsato, Phase transitional behavior and piezoelectric properties of (Na0.5K0.5)NbO3–LiNbO3 ceramics. Appl. Phys. Lett. 85, 4121–4123 (2004)

    Article  CAS  Google Scholar 

  7. P. Li, J. Zhai, B. Shen, S. Zhang, X. Li, F. Zhu, X. Zhang, Ultrahigh piezoelectric properties in textured (K,Na)NbO3 -based lead-free ceramics. Adv. Mater. 30, 1705171 (2018)

    Article  Google Scholar 

  8. H. Tang, M.F. Zhang, S.J. Zhang, Y.J. Feng, F. Li, T.R. Shrout, Investigation of dielectric and piezoelectric properties in Pb(Ni1/3Nb2/3)O3–PbHfO3–PbTiO3 ternary system. J. Eur. Ceram. Soc. 33, 2491–2497 (2013)

    Article  CAS  Google Scholar 

  9. Y. Yan, Z. Liu, Z. Li, M. Zhang, D. Zhang, Y. Feng, Improving piezoelectric properties of Pb(Ni, Nb)O3-Pb(Hf, Ti)O3 ceramics by LiF addition. Ceram.Int. 44, 5790–5793 (2018)

    Article  CAS  Google Scholar 

  10. R. Cao, G. Li, J. Zeng, S. Zhao, L. Zheng, Q. Yin, The piezoelectric and dielectric properties of 0.3Pb(Ni1/3Nb2/3)O3-xPbTiO3-(0.7 – x)PbZrO3 ferroelectric ceramics near the morphotropic phase boundary. J. Am. Ceram. Soc. 93, 737–741 (2010)

    Article  CAS  Google Scholar 

  11. F. Gao, C.J. Wang, X.C. Liu, C.S. Tian, Effect of tungsten on the structure and piezoelectric properties of PZN–PZT ceramics. Ceram.Int. 33, 1019–1023 (2007)

    Article  CAS  Google Scholar 

  12. B. Rawal, N.N. Wathore, B. Praveenkumar, H.S. Panda, Effect of donor and acceptor co-doping in (Na0.52K0.48) (Nb0.95Sb0.05)O3 lead-free piezoceramic. J. Mater. Sci. 28, 16426–16432 (2017)

    CAS  Google Scholar 

  13. H.S. Panda, B. Rawal, N.N. Wathore, B. Praveenkumar, Castling of phases in BaZrO3 doped (Na0.52K0.48)(Nb0.95Sb0.05)O3: synergistic effect on electrical fatigue, ageing and thermal stability. J. Electroceram. 43, 51–63 (2019)

    Article  CAS  Google Scholar 

  14. W. Hu, Y. Liu, R.L. Withers, T.J. Frankcombe, L. Noren, A. Snashall, M. Kitchin, P. Smith, B. Gong, H. Chen, J. Schiemer, F. Brink, J. Wong-Leung, Electron-pinned defect-dipoles for high-performance colossal permittivity materials. Nat. Mater. 12, 821–826 (2013)

    Article  CAS  Google Scholar 

  15. B. Yin, Y. Huan, Z. Wang, X. Lin, S. Huang, T. Wei, Enhanced thermal reliability of Mn-doped (K, Na)NbO3-based piezoelectric ceramics. J. Mater. Sci. 30, 18659–18665 (2019)

    CAS  Google Scholar 

  16. W. Liu, W. Chen, L. Yang, L. Zhang, Y. Wang, C. Zhou, S. Li, X. Ren, Ferroelectric aging effect in hybrid-doped BaTiO3 ceramics and the associated large recoverable electrostrain. Appl. Phys.Lett. 89, 172908 (2006)

    Article  Google Scholar 

  17. Y. Feng, W.L. Li, D. Xu, Y.L. Qiao, Y. Yu, Y. Zhao, W.D. Fei, Defect engineering of lead-free piezoelectrics with high piezoelectric properties and temperature-stability. ACS Appl. Mater. Int. 8, 9231–9241 (2016)

    Article  CAS  Google Scholar 

  18. Y. Feng, W.L. Li, D. Xu, W.P. Cao, Y. Yu, W.D. Fei, Enhanced piezoelectric properties and constricted hysteresis behaviour in PZT ceramics induced by Li+–Al3+ ionic pairs. RSC Adv. 6, 36118–36124 (2016)

    Article  CAS  Google Scholar 

  19. G. Cilaveni, K.V. Ashok Kumar, S.S.K. Raavi, C. Subrahmanyam, S. Asthana, Control over relaxor, piezo-photocatalytic and energy storage properties in Na0.5Bi0.5TiO3 via processing methodologies. J. Alloys Compd. 798, 540–552 (2019)

    Article  CAS  Google Scholar 

  20. M. Makaremi, M.S. Jhon, M.S. Mauter, L.T. Biegler, Surface wetting study via pseudocontinuum modeling. J. Phys. Chem. C 120, 11528–11534 (2016)

    Article  CAS  Google Scholar 

  21. J. Du, J. Qiu, K. Zhu, H. Ji, X. Pang, J. Luo, Effects of Fe2O3 doping on the microstructure and piezoelectric properties of 0.55Pb(Ni1/3Nb2/3)O3–0.45Pb(Zr0.3Ti0.7)O3 ceramics. Mater. Lett. 66, 153–155 (2012)

    Article  CAS  Google Scholar 

  22. A. Chang, J. Jian, The orientational growth of grains in doped BaTiO3 PTCR materials by microwave sintering. J. Mater. Process.Tech. 137, 100–101 (2003)

    Article  CAS  Google Scholar 

  23. M.F. Zhang, Y. Wang, K.F. Wang, J.S. Zhu, J.M. Liu, Characterization of oxygen vacancies and their migration in Ba-doped Pb(Zr0.52Ti0.48)O3 ferroelectrics. J. Appl. Phys. 105, 061639 (2009)

    Article  Google Scholar 

  24. M.K. Zhu, P.X. Lu, Y.D. Hou, H. Wang, H. Yan, Effects of Fe2O3 addition on microstructure and piezoelectric properties of 0.2PZN–0.8PZT ceramics. J. Mater. Res. 20, 2670–2675 (2011)

    Article  Google Scholar 

  25. X. Yan, K.H. Lam, X. Li, R. Chen, W. Ren, X. Ren, Q. Zhou, K.K. Shung, Lead-free intravascular ultrasound transducer using BZT-50BCT ceramics. IEEE Trans. Ultrason. Ferr. 60, 1272–1276 (2013)

    Article  Google Scholar 

  26. D.E. Dausch, Ferroelectric polarization fatigue in PZT-based rainbows and bulk ceramics. J. Am. Ceram. Soc. 80, 2355–2360 (1997)

    Article  CAS  Google Scholar 

  27. M. Liu, K.J. Hsia, M.R. Sardela, In situ X-ray diffraction study of electric-field-induced domain switching and phase transition in PZT-5H. J. Am. Ceram. Soc. 88, 210–215 (2004)

    Article  Google Scholar 

  28. X. Hao, J. Zhai, L.B. Kong, Z. Xu, A comprehensive review on the progress of lead zirconate-based antiferroelectric materials. Prog. Mater. Sci. 63, 1–57 (2014)

    Article  CAS  Google Scholar 

  29. E.D. Politova, G.M. Kaleva, A.V. Mosunov, A.H. Segalla, A.E. Dosovitskiy, A.L. Mikhlin, Processing, phase transitions, and dielectric properties of BSPT ceramics. J. Adv. Dielectr. 3, 1350024 (2013)

    Article  Google Scholar 

  30. W. Xu, G. Yang, L. Jin, J. Liu, Y. Zhang, Z. Zhang, Z. Jiang, High-k polymer nanocomposites filled with hyperbranched phthalocyanine-coated BaTiO3 for high-temperature and elevated field applications. ACS Appl. Mater. Int. 10, 11233–11241 (2018)

    Article  CAS  Google Scholar 

  31. K.V. Allamraju, K. Srikanth, Modal analysis of PZT discs for uniaxial impact loaded energy harvesters. Mater. Today 4, 2682–2686 (2017)

    Google Scholar 

  32. Q. Li, J. Wei, J. Cheng, J. Chen, High temperature dielectric, ferroelectric and piezoelectric properties of Mn-modified BiFeO3-BaTiO3 lead-free ceramics. J. Mater. Sci. 52, 229–237 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

Authors would like to acknowledge the financial supports of the National Natural Science Foundation of China (Nos. 51602240, 61701369 and 51701147).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhimin Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Li, Z., Yan, Y. et al. Enhanced piezoelectric properties of 0.49Pb(Ni,Nb)O3–0.51Pb(Hf,Ti)O3 ceramics by ion pair doping. J Mater Sci: Mater Electron 31, 17679–17687 (2020). https://doi.org/10.1007/s10854-020-04322-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04322-6

Navigation