Synthesis of CdS@ZnO nanocomposites with wide visible light absorption range


In this paper, urchin-like ZnO nanostructures were synthesized via a facile one-step hydrothermal method. CdS was deposited on the ZnO nanostructures by the deposition method. Field emission scanning electron microscope (FESEM) and X-ray diffraction (XRD) were used to analyze the morphology and structure of samples. FESEM images show that urchin-like ZnO nanostructures gradually turn into flower-like CdS@ZnO nanostructures with the increase of deposition times. XRD patterns confirm that the ZnO nanostructures present hexagonal wurtzite crystalline structure and CdS@ZnO nanostructures have high crystallinity. UV-vis absorption spectra and photoluminescence spectra (PL) were used to characterize the optical properties of samples. The results show that CdS@ZnO nanocomposites have higher visible light utilization when compared with the pure urchin-like ZnO. Furthermore, the results of photocatalysis experiments show that the absorption towards visible light of ZnO is significantly enhanced because of the incorporation of CdS. This kind of material with excellent optical properties can be used in photocatalysis and optoelectronic devices.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. 1.

    S. Cho, J.W. Jang, J.S. Lee et al., Room temperature synthesis and optical properties of small diameter (5 nm) ZnO nanorod arrays. J. Nanoscale 2(10), 2199–2202 (2010)

    CAS  Article  Google Scholar 

  2. 2.

    P.C. Gao, Q. Ma, D.F. Ding et al., Distinct functional elements for outer-surface anti-interference and inner-wall ion gating of nanochannels. J. Nat. Commun. 9(1), 4557 (2018)

    Article  Google Scholar 

  3. 3.

    R. Agarwal, C.M. Lieber, Semiconductor nanowires: optics and optoelectronics. J. Appl. Phys. A 85(3), 209–215 (2006)

    CAS  Article  Google Scholar 

  4. 4.

    A. Tiwari, M. Snure, Synthesis and characterization of ZnO nano-plant-like electrodes. J. Nanosci. Nanotechnol. 8(8), 3981–3987 (2008)

    CAS  Article  Google Scholar 

  5. 5.

    Y.Y. Zhang, L.L. Wang, X.Y. Kong et al., Novel Ag–Cu bimetallic alloy decorated near-infrared responsive three-dimensional rod-like architectures for efficient photocatalytic water purification. J. Colloid Interface Sci. 522, 29–39 (2018)

    CAS  Article  Google Scholar 

  6. 6.

    W.J. Han, L. Ren, X. Qi et al., Synthesis of CdS/ZnO/graphene composite with high-efficiency photoelectrochemical activities under solar radiation. J. Appl. Surf. Sci. 299, 12–18 (2014)

    CAS  Article  Google Scholar 

  7. 7.

    S. Ida, A. Takashiba, S. Koga et al., Potential gradient and photocatalytic activity of an ultrathin p-n junction surface prepared with two-dimensional semiconducting nanocrystals. J. Am. Chem. Soc. 136(5), 1872–1878 (2014)

    CAS  Article  Google Scholar 

  8. 8.

    S.N. Habisreutinger, L. Schmidtmende, J.K. Stolarczyk, Photocatalytic reduction of CO2 on TiO2 and other semiconductors. J. Angew. Chem. Int. Ed. 52(29), 7372–7408 (2013)

    CAS  Article  Google Scholar 

  9. 9.

    Y.P. Sun, T. He, H.Y. Guo et al., Structural and optical properties of the S-doped ZnO particles synthesized by hydrothermal method. J. Appl. Surf. Sci. 257(3), 1125–1128 (2010)

    CAS  Article  Google Scholar 

  10. 10.

    C.G. Tian, Q. Zhang, A.P. Wu et al., Cost-effective large-scale synthesis of ZnO photocatalyst with excellent performance for dye photodegradation. J. Chem. Commun. 48(23), 2858–2860 (2012)

    CAS  Article  Google Scholar 

  11. 11.

    L. Xin, T. Xia, C. Xu et al., Synthesis and photoactivity of nanostructured CdS–TiO2 composite catalysts. J. Catalysis Today 225(15), 64–73 (2014)

    Google Scholar 

  12. 12.

    X.C. Li, T.Y. Zhai, P.C. Gao et al., Role of outer surface probes for regulating ion gating of nanochannels. J. Nat. Commun. 9(1), 40–50 (2018)

    Article  Google Scholar 

  13. 13.

    G. Ai, R. Mo, H. Xu et al., Vertically aligned TiO2/(CdS, CdTe, CdSTe) core/shell nanowire array for photoelectrochemical hydrogen generation. J. Power Sources 280(4), 5–11 (2015)

    CAS  Article  Google Scholar 

  14. 14.

    R. Chen, K. Li, X.S. Zhu et al., In situ synthesis of porous ZnO-embedded Zn1−xCdxS/CdS heterostructures for enhanced photocatalytic activity. J. Cryst. Eng. Comm. 18(8), 1446–1452 (2016)

    CAS  Article  Google Scholar 

  15. 15.

    X.J. Bai, L. Wang, R.L. Zong et al., Performance enhancement of ZnO photocatalyst via synergic effect of surface oxygen defect and graphene hybridization. J. Langmuir 29(9), 3097–3105 (2013)

    CAS  Article  Google Scholar 

  16. 16.

    E. Baylan, O.A. Yildirim, Highly efficient photocatalytic activity of stable manganese-doped zinc oxide (Mn:ZnO) nanofibers via electrospinning method. J. Appl. Surf. Sci. 103(15), 104621 (2019)

    CAS  Google Scholar 

  17. 17.

    R.R. Su, Y.X. Yu, Y.H. Xiao et al., Earth abundant ZnO/CdS/CuSbS2 core-shell nanowire arrays as highly efficient photoanode for hydrogen evolution. Int. J. Hydrogen Energy 43(12), 6040–6048 (2018)

    CAS  Article  Google Scholar 

  18. 18.

    F. Xia, Y. Cheng, J. Dai et al., Intracellular H2O2-responsive AIE gen with peroxidase-mediated catalysis for inflammatory cell selective imaging and inhibition. J. Angew. Chem. Int. Ed. 57(12), 3123–3127 (2018)

    Article  Google Scholar 

  19. 19.

    A.K. Singh, G.S. Thool, P.R. Bangal et al., Low temperature Mn doped ZnO nanorod array: synthesis and its photoluminescence behavior. J. Ind. Eng. Chem. Res. 53(22), 9383–9390 (2014)

    CAS  Article  Google Scholar 

  20. 20.

    D.W. Wakerley, M.F. Kuehnel, K.L. Orchard et al., Solar-driven reforming of lignocellulose to H2 with a CdS/CdOx photocatalyst. J. Nat. Energy 2(4), 17021 (2017)

    CAS  Article  Google Scholar 

  21. 21.

    W.J. Han, L. Ren, X. Qi et al., Self-assembled three-dimensional graphene-based aerogel with embedded multifarious functional nanoparticles and its excellent photoelectrochemical activities. J. ACS Sustain. Chem. Eng. 2(4), 741–748 (2014)

    CAS  Article  Google Scholar 

  22. 22.

    H.N. Chen, W.P. Li, H.C. Liu et al., A suitable deposition method of CdS for high performance CdS-sensitized ZnO electrodes: sequential chemical bath deposition. J. Solar Energy 84(7), 1201–1207 (2010)

    CAS  Article  Google Scholar 

  23. 23.

    M. Norouzi, M. Kolahdouz, P. Ebrahimi et al., Synthesis of amorphous ZnO–SiO2 nanocomposite with enhanced chemical sensing properties. J. Thin Solid Films 619, 41–47 (2016)

    CAS  Article  Google Scholar 

  24. 24.

    D. Bao, P. Gao, L.Q. Wang et al., ZnO nanorod arrays and hollow spheres through a facile room-temperature solution route and their enhanced ethanol gas-sensing properties. J. Chem Plus Chem 78(10), 1266–1272 (2013)

    CAS  Google Scholar 

  25. 25.

    Y.Q. Wang, Q. Ma, H.X. Jia et al., One-step solution synthesis and formation mechanism of flower-like ZnO and its structural and optical characterization. J. Ceram. Int. 42(9), 10751–10757 (2016)

    CAS  Article  Google Scholar 

  26. 26.

    N. Matinise, X.G. Fuku, K. Kaviyarasu et al., ZnO nanoparticles via moringa oleifera green synthesis: physical properties & mechanism of formation. J. Appl. Surf. Sci. 406, 339–347 (2017)

    CAS  Article  Google Scholar 

  27. 27.

    S. Prabakaran, K.D. Nisha, S. Harish et al., Synergistic effect and enhanced electrical properties of TiO2/SnO2/ZnO nanostructures as electron extraction layer for solar cell application. J. Appl. Surf. Sci. 498, 143702 (2019)

    CAS  Article  Google Scholar 

  28. 28.

    E.A.A. Júnior, F.X. Nobre, G.D.S. Sousa et al., Synthesis, growth mechanism, optical properties and catalytic activity of ZnO microcrystals obtained via hydrothermal processing. J. RSC Adv. 7(39), 24263–24281 (2017)

    Article  Google Scholar 

Download references


This work was sponsored by Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control (Grant No. 2017B030301012) and Hubei Key Laboratory of Forensic Science (Hubei University of Police), (Grant No. 2018KFKT05).

Author information



Corresponding author

Correspondence to Yongqian Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Mengyang Lu and Xinmeng Wang are the co-first authors.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lu, M., Wang, X., Xu, C. et al. Synthesis of CdS@ZnO nanocomposites with wide visible light absorption range. J Mater Sci: Mater Electron 31, 17624–17632 (2020).

Download citation