The effect of graphene nanoplatelets on technical properties of micro- and nano-sized TiO2 matrix: a comparative research study on electrical and optical characteristics

Abstract

In this study, titanium dioxide (TiO2)-based graphene nanoplatelets (GNPs)-reinforced composite materials were produced and the electrical and optical properties of the composite materials were investigated. Graphene, which was used as a reinforcing material, was produced by using liquid-phase exfoliation method. While the TiO2 used as matrix material was commercially available for the first group of samples, it was produced by using the sol–gel method for the second group of the samples. Different rates of graphene were added to the TiO2 powders which were commercially available and produced by using sol–gel method. GNPs used as a reinforcing material were subjected to TEM analysis. The resulting composite materials were structurally examined in SEM and XRD. Then, the changes in electrical conductivity of these composites under the impact of temperature were measured. UV–Vis spectrometers of the samples were taken and their optical properties were determined. When temperature-based electrical examination of the produced composite materials was performed, an increase was observed on the electrical conductivity values in both groups of samples as a result of addition of the reinforcing element. In addition, TiO2-containing composites produced by using sol–gel method had lower electrical conductivity comparing with commercially purchased TiO2-containing composites especially at high temperatures. In the optical measurements, it was observed that there was an increase in the optical bandgap energy range values with GNPs reinforcement but a decrease in the reflectance values.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. 1.

    M. Shi, J. Shen, H. Ma, Z. Li, X. Lu, N. Li, M. Ye, Colloids Surf. A 405, 30–37 (2012)

    CAS  Article  Google Scholar 

  2. 2.

    A.K. Geim, K.S. Novoselov, Nanoscience and Technology: A Collection of Reviews from Nature Journals (World Scientific, Singapore, 2010), pp. 11–19

    Google Scholar 

  3. 3.

    N. Liu, F. Luo, H. Wu, Y. Liu, C. Zhang, J. Chen, Adv. Funct. Mater. 18, 1518–1525 (2008)

    CAS  Article  Google Scholar 

  4. 4.

    M. Alanyalıoğlu, J.J. Segura, J. Oro-Sole, N. Casan-Pastor, Carbon 50, 142–152 (2012)

    Article  Google Scholar 

  5. 5.

    M. Lavin-Lopez, J. Valverde, S. Ordoñez-Lozoya, A. Paton-Carrero, A. Romero, Mater. Chem. Phys. 222, 173–180 (2019)

    CAS  Article  Google Scholar 

  6. 6.

    Z. Chen, L. Jin, W. Hao, W. Ren, H.-M. Cheng, Mater. Today Nano 5, 100027 (2019)

    Article  Google Scholar 

  7. 7.

    P.W. Sutter, J.-I. Flege, E.A. Sutter, Nat. Mater. 7, 406–411 (2008)

    CAS  Article  Google Scholar 

  8. 8.

    P. Arifin, M.A. Mustajab, S. Haryono, D. Adhika, A. Nugraha, Mater. Res. Express 6, 076313 (2019)

    CAS  Article  Google Scholar 

  9. 9.

    N. Dehghani, E. Yousefiazari, Mater. Res. Express 5, 046304 (2018)

    Article  Google Scholar 

  10. 10.

    A.W. Anwar, A. Majeed, N. Iqbal, W. Ullah, A. Shuaib, U. Ilyas, F. Bibi, H.M. Rafique, J. Mater. Sci. Technol. 31, 699–707 (2015)

    CAS  Article  Google Scholar 

  11. 11.

    Y. Hu, C. Yuan, J. Cryst. Growth 274, 563–568 (2005)

    CAS  Article  Google Scholar 

  12. 12.

    L.E. Pérez-Jiménez, J.C. Solis-Cortazar, L. Rojas-Blanco, G. Perez-Hernandez, O.S. Martinez, R.C. Palomera, F. Paraguay-Delgado, I. Zamudio-Torres, E.R. Morales, Results Phys. 12, 1680–1685 (2019)

    Article  Google Scholar 

  13. 13.

    J.C. Cano-Franco, M. Álvarez-Láinez, Mater. Sci. Semicond. Process. 90, 190–197 (2019)

    CAS  Article  Google Scholar 

  14. 14.

    U.S. Heo, D.-W. Kim, K.-S. Kim, D.-W. Park, Appl. Surf. Sci. 474, 118–126 (2019)

    CAS  Article  Google Scholar 

  15. 15.

    B. Qiu, M. Xing, J. Zhang, J. Am. Chem. Soc. 136, 5852–5855 (2014)

    CAS  Article  Google Scholar 

  16. 16.

    A.S. Arico, P. Bruce, B. Scrosati, J.-M. Tarascon, W. Van Schalkwijk, Materials for Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group (World Scientific, Singapore, 2011), pp. 148–159

    Google Scholar 

  17. 17.

    J. Qiu, P. Zhang, M. Ling, S. Li, P. Liu, H. Zhao, S. Zhang, ACS Appl. Mater. Interfaces 4, 3636–3642 (2012)

    CAS  Article  Google Scholar 

  18. 18.

    T. Huang, X. Zhang, H. Wang, X. Chen, L. Wen, M. Huang, Y. Zhong, H. Luo, G. Tang, L. Zhou, Superlattices Microstruct. 126, 17–24 (2019)

    CAS  Article  Google Scholar 

  19. 19.

    M. Darvishi, J. Seyed-Yazdi, Mater. Res. Express 3, 085601 (2016)

    Article  Google Scholar 

  20. 20.

    Q. Xiang, J. Yu, M. Jaroniec, J. Am. Chem. Soc. 134, 6575–6578 (2012)

    CAS  Article  Google Scholar 

  21. 21.

    P. Van Viet, T.H. Huy, T.T. Sang, H.M. Nguyet, C.M. Thi, Mater. Res. Express 6, 055006 (2019)

    Article  Google Scholar 

  22. 22.

    Ö Güler, S.H. Güler, V. Selen, M.G. Albayrak, E. Evin, Fullerenes Nanotubes Carbon Nanostruct. 24, 123–127 (2016)

    Article  Google Scholar 

  23. 23.

    S.H. Güler, Ö Güler, E. Evin, Fullerenes Nanotubes Carbon Nanostruct. 25, 34–39 (2017)

    Article  Google Scholar 

  24. 24.

    T. Ates, C. Tatar, F. Yakuphanoglu, Sens. Actuators A Phys. 190, 153–160 (2013)

    CAS  Article  Google Scholar 

  25. 25.

    F. Jensen, Qual. Reliab. Eng. Int. 1, 13–17 (1985)

    Article  Google Scholar 

  26. 26.

    I. El Radaf, T.A. Hameed, I. Yahia, Mater. Res. Express 5, 066416 (2018)

    Article  Google Scholar 

  27. 27.

    E. Davis, N. Mott, Philos. Mag. 22, 0903–0922 (1970)

    CAS  Article  Google Scholar 

  28. 28.

    S.H. Güler, M. Boyrazlı, Ö Başgöz, F. Yakuphanoglu, Physica B 547, 120–126 (2018)

    Article  Google Scholar 

  29. 29.

    Ö Guler, S.H. Guler, F. Yo, H. Aydin, C. Aydin, F. El-Tantawy, E.-S.M. Duraia, A. Fouda, Fullerenes Nanotubes Carbon Nanostruct. 23, 865–869 (2015)

    CAS  Article  Google Scholar 

  30. 30.

    O. Guler, Int. J. Mater. Res. 106, 641–646 (2015)

    CAS  Article  Google Scholar 

  31. 31.

    S.H. Güler, Ö Güler, E. Evin, S. Islak, Optik 127, 3187–3191 (2016)

    Article  Google Scholar 

  32. 32.

    P.M. Martins, C. Ferreira, A. Silva, B. Magalhães, M.M. Alves, L. Pereira, P. Marques, M. Melle-Franco, S. Lanceros-Méndez, Compos. Part B: Eng. 145, 39–46 (2018)

    CAS  Article  Google Scholar 

  33. 33.

    Ö Güler, Ç Yavuz, Ö Başgöz, S. Altın, I.S. Yahia, J. Mater. Sci.: Mater. Electron. 31, 3184–3196 (2020)

    Google Scholar 

  34. 34.

    V. Stengl, D. Popelková, P. Vlácil, J. Phys. Chem. C 115, 25209–25218 (2011)

    CAS  Article  Google Scholar 

  35. 35.

    P. Cheng, Z. Yang, H. Wang, W. Cheng, M. Chen, W. Shangguan, G. Ding, Int. J. Hydrogen Energy 37, 2224–2230 (2012)

    CAS  Article  Google Scholar 

  36. 36.

    W. Wang, J. Yu, Q. Xiang, B. Cheng, Appl. Catal. B 119, 109–116 (2012)

    Article  Google Scholar 

  37. 37.

    L. Gao, Q. Zhang, Scripta Mater. 44, 1195–1198 (2001)

    CAS  Article  Google Scholar 

  38. 38.

    K. Kočí, L. Obalová, L. Matějová, D. Plachá, Z. Lacný, J. Jirkovský, O. Šolcová, Appl. Catal. B 89, 494–502 (2009)

    Article  Google Scholar 

  39. 39.

    L. Luo, M. Yuan, H. Sun, T. Peng, T. Xie, Q. Chen, J. Chen, Mater. Sci. Semiconduct. Process. 89, 186–193 (2019)

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ömer Güler.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Güler, Ö., Ayhan, H., Başgöz, Ö. et al. The effect of graphene nanoplatelets on technical properties of micro- and nano-sized TiO2 matrix: a comparative research study on electrical and optical characteristics. J Mater Sci: Mater Electron 31, 17511–17523 (2020). https://doi.org/10.1007/s10854-020-04307-5

Download citation