Tuning microwave absorption properties of melt-spun FeSiCo alloys based on the addition of rare earth Sm


The effects of Sm-doped on microwave absorption properties of melt-spun FeSiCo alloys were studied in this paper. The composite alloys were characterized by XRD, SEM, VSM, and vector network analysers (VNA). The phase identification shows that only α-Fe(Co) phase was observed for all samples. SEM images have revealed that the morphology of all powders were flaky shape with different particle size. The values of saturation magnetization (Ms) and coercivity (Hc) increased with the increase of Sm-doping content. In addition, the minimal reflection loss ((RL)min) is − 7.96 dB at 1.7 GHz with the thickness of 3 mm for Sm1Fe79Si10Co10 sample. The results reveal that the addition of Sm can improve the microwave absorption property of FeSiCo alloys.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. 1.

    Y.B. Feng, C.M. Tang, T. Qiu, Effect of ball milling and moderate surface oxidization on the microwave absorption properties of FeSiAl composites. Mater. Sci. Eng. B 178, 1005–1011 (2013)

    CAS  Google Scholar 

  2. 2.

    Z.R. Jia, D. Lan, K.L. Lin, M. Qin, K.C. Kou, G.L. Wu, H.J. Wu, Progress in low-frequency microwave absorbing materials. J. Mater. Sci.: Mater. Electron. 29, 17122–17136 (2018)

    CAS  Google Scholar 

  3. 3.

    H.B. Yi, F.S. Wen, L. Qiao, F.S. Li, Microwave electromagnetic properties of multiwalled carbon nanotubes filled with Co nanoparticles. J. Appl. Phys. 106, 1039221–1039224 (2009)

    Google Scholar 

  4. 4.

    F.S. Wen, F. Zhang, J.Y. Xiang, W.T. Hu, S.J. Yuan, Z.Y. Liu, Microwave absorption properties of multiwalled carbon nanotube/FeNi nanopowders as light-weight microwave absorbers. J. Magn. Magn. Mater. 343, 281–285 (2013)

    CAS  Google Scholar 

  5. 5.

    F.F. Xu, L. Ma, Q.S. Huo, M.Y. Gan, J.H. Tang, Microwave absorbing properties and structural design of microwave absorbers based on polyaniline and polyaniline/magnetite nanocomposite. J. Magn. Magn. Mater. 374, 311–316 (2015)

    CAS  Google Scholar 

  6. 6.

    T.D. Zhou, L.J. Deng, D.F. Liang, Effect of Si content on ordering degree and electromagnetic characteristics in FeSiAl alloys. Acta Metall. 21, 191–196 (2008)

    CAS  Google Scholar 

  7. 7.

    T.D. Zhou, P.H. Zhou, D.F. Liang, L.J. Deng, Structure and electromagnetic characteristics of flaky FeSiAl powders made by melt-quenching. J. Alloys Compd. 484, 545–549 (2009)

    CAS  Google Scholar 

  8. 8.

    G.Z. Xie, P. Wang, B.S. Zhang, L.K. Yuan, Y. Shi, P.H. Lin, H.X. Lu, Electromagnetic wave-absorption properties of rapidly quenched of Nd-Fe-B nanocomposites with low Nd content. J. Magn. Magn. Mater. 320, 1026–1029 (2008)

    CAS  Google Scholar 

  9. 9.

    H. Gave, B.D. Ngom, A.C. Beye, A.M. Strydom, V.V. Srinivasu, M. Chaker, N. Manyala, Low-field microwave absorption in pulse laser deposited FeSi thin film. J. Magn. Magn. Mater. 324, 1172–1176 (2012)

    Google Scholar 

  10. 10.

    F. Fiorillo, Advances in Fe-Si properties and their interpretation. J. Magn. Magn. Mater. 157(158), 428–431 (1996)

    Google Scholar 

  11. 11.

    G.K. Tian, X.F. Bi, Fabrication and magnetic properties of Fe-6.5% Si alloys by magnetron sputtering method. J. Alloys Compd. 502, 1–4 (2010)

    CAS  Google Scholar 

  12. 12.

    Y.G. Xu, L.M. Yuan, J. Cai, J.L. Lv, D.Y. Zhang, Effects of particle sizes on the electro- magnetic property of flaky FeSi composites. Acta Metall. 26, 366–372 (2013)

    CAS  Google Scholar 

  13. 13.

    L.D. Liu, Y.P. Duan, J.B. Guo, L.Y. Chen, S.H. Liu, Influence of particle size on the electromagnetic and microwave absorption properties of FeSi/paraffin composites. Physica B 406, 2261–2265 (2011)

    CAS  Google Scholar 

  14. 14.

    R.B. Yang, W.F. Liang, C.C. Chen, S.T. Choi, Electromagnetic and microwave absorbing properties of raw and milled FeSiCr particles. J. Appl Phys. 115, 17B536 (2014)

    Google Scholar 

  15. 15.

    L. Wang, H.D. Xiong, S.U. Rehman, Q.L. Tan, Y. Chen, L.L. Zhang, J.P. Yang, F.Z. Wu, M.L. Zhong, Z.C. Zhong, Microwave absorbing property enhancement of FeSiCr nanomaterials by regulating nanoparticle size. J. Alloys Compd. 803, 631–636 (2019)

    CAS  Google Scholar 

  16. 16.

    I.A. Al-Omari, A. Rais, Structural and magnetic properties of the Fe0.7-xSiO3Cox alloy system. J. Magn. Magn. Mater. 299, 430–434 (2006)

    CAS  Google Scholar 

  17. 17.

    L.C. Cheng, J.L. Xiong, H.Y. Zhou, S.K. Pan, H.H. Huang, Effect of Ce doping on micro-wave absorption properties of Pr2Fe17 alloy. J. Electon. Mater. 45, 1023–1027 (2016)

    CAS  Google Scholar 

  18. 18.

    Z.Q. Qiao, S.K. Pan, J.L. Xiong, L.C. Cheng, Q.R. Yao, P.H. Lin, Magnetic and microwave absorption properties of La-Nd-Fe alloys. J. Magn. Magn. Mater. 423, 197–202 (2017)

    CAS  Google Scholar 

  19. 19.

    J.L. Xiong, S.K. Pan, Effect of rare earth elements on electromagnetic and microwave absorption properties of Fe-based alloys. J. Electon. Mater. 46, 6333–6340 (2017)

    CAS  Google Scholar 

  20. 20.

    L.X. Wang, J. Song, Q.T. Zhang, X.G. Huang, N.C. Xu, The microwave magnetic perform- ance of Sm3+ doped BaCo2Fe16O27. J. Alloys Compd. 481, 863–866 (2009)

    CAS  Google Scholar 

  21. 21.

    N.Y. Xie, G.Z. Xie, X. Gao, L.J. Ye, L. Yang, C. Xiong, J. Chen, Absorbing properties of melt spun FeSi alloy with the addition of Co in 5G band. J. Mater. Sci. Mater. Electron. 30, 18065–18069 (2019)

    CAS  Google Scholar 

  22. 22.

    L. Xi, J.H. Du, J.J. Zhou, J.H. Ma, X.Y. Li, Z. Wang, Y.L. Zuo, D.S. Xue, Soft magnetic property and magnetization reversal mechanism of Sm doped FeCo thin film for high-frequency application. Thin Solid Films 520, 5421–5425 (2012)

    CAS  Google Scholar 

  23. 23.

    C.X. Cui, L.J. Xu, T.P. Xie, C.L. Liu, J. Yang, Structural and magnetic properties of Sm-doped strontium hexaferrite (SrFe12−xSmxO19) powders. Mater. Focus. 3, 335–360 (2014)

    Google Scholar 

  24. 24.

    M. Imafukua, K. Yaoita, S. Satoa, W. Zhanga, A. Inoueb, Y. Wasedac, Local atomic structure of Fe-Co-Ln-B(Ln=Sm, Tb or Dy) amorphous alloys with supercooled liquid region. Mater. Sci. Eng. A 304–306, 660–664 (2001)

    Google Scholar 

  25. 25.

    R.B. Yang, W.F. Liang, S.T. Choi, C.K. Lin, The effects of size and shape of iron particles on the microwave absorbing properties of composite absorbers. IEEE Trans. Magn. 49, 4180–4183 (2013)

    CAS  Google Scholar 

  26. 26.

    M. Lauda, J. Füzer, P. Kollár, M. Strečková, R. Bureš, J. Kováč, M. Baťková, I. Baťko, Magnetic properties and loss separation in FeSi/MnZnFe2O4 soft magnetic composites. J. Magn. Magn. Mater. 411, 12–17 (2016)

    CAS  Google Scholar 

  27. 27.

    V.A. Khomchenko, J.A. Paixão, V.V. Shvartsman, P. Borisov, W. Kleemann, D.V. Karpinskyc, A.L. Kholkin, Effect of Sm substitution on ferroelectric and magnetic properties of BiFeO3. Scr. Mater. 62, 238–241 (2010)

    CAS  Google Scholar 

  28. 28.

    Q. Li, S.X. Bao, Y.L. Liu, Y.X. Li, Y.L. Jing, J. Li, Influence of lightly Sm-substitution on crystal structure, magnetic and dielectric properties of BiFeO3 ceramics. J. Alloys Compd. 682, 672–678 (2016)

    CAS  Google Scholar 

  29. 29.

    E. Swatsitang, A. Karaphun, S. Phokha, S. Hunpratub, T. Putjuso, Investigation of structural, morphological, optical, and magnetic properties of Sm-doped LaFeO3 nanopowders prepared by sol-gel method. J. Sol-Gel Sci. Technol. 81, 483–492 (2017)

    CAS  Google Scholar 

  30. 30.

    M.A.P. Buzinaro, N.S. Ferreira, F. Cunha, M.A. Macêdo, Hopkinson effect, structural and magnetic properties of M-type Sm3+-doped SrFe12O19 nanoparticles produced by a proteic sol-gel process. Ceram. Int. 42, 5865–5872 (2016)

    CAS  Google Scholar 

  31. 31.

    Y.T. Zhang, G. Wang, Z.G. Nie, W.K. Shi, Y.M. Rong, Experimental study of high temperature hydrozing annealing 1J50 alloy's magnetic properties. J. Manuf. Sci. E 135, 061024 (2013)

    Google Scholar 

  32. 32.

    J. Russat, G. Suran, H. Ouahmane, M. Rivoire, J. Sztern, Frequency dependent complex permeability in rare earth substituted cobalt/nonmagnetic transition metal soft ferromagnetic amorphous thin films. J. Appl. Phys. 73, 1386–1389 (1993)

    CAS  Google Scholar 

  33. 33.

    J. Russat, G. Suran, H. Ouahmane, M. Rivoire, J. Sztern, A study of complex permeability in rare earth-substituted cobalt/nonmagnetic transition metal amorphous thin films. J. Appl. Phys. 73, 5592–5594 (1993)

    CAS  Google Scholar 

  34. 34.

    A.O. Shiryaev, S.Y. Bobrovskii, A.B. Granovsky, A.V. Osipov, A.S. Naboko, E. Lahderanta, A.N. Lagarkov, K.N. Rozanov, P.A. Zezyulina, Coaxial measurements of microwave permeability of thin supermalloy films under magnetic bias. J. Magn. Magn. Mater. 477, 329–333 (2019)

    CAS  Google Scholar 

  35. 35.

    Y. Luo, D.B. Yu, H.W. Li, W.D. Zhuang, Y.G. Mao, X.X. Chen, K.S. Li, Y.C. Liu, Structure and permanent magnetic properties of SmFex (x=3–8) SmFe melt spun ribbons during heat treatment. Journal of Rare Earths. 32, 960–964 (2014)

    CAS  Google Scholar 

  36. 36.

    F.Y. Guo, G.J. Ji, J.J. Xu, H.F. Zou, S.C. Gan, X.C. Xu, Effect of different rare-earth elements substitution on microstructure and microwave absorbing properties of Ba0.9RE0.1Co2Fe16O27 (RE=La, Nd, Sm)of Ba0.9RE0.1Co2Fe16O27 (RE=La, Nd, Sm) particles. J. Magn. Magn. Mater. 324, 1209–1013 (2012)

    CAS  Google Scholar 

  37. 37.

    S. Thankachan, B.P. Jacob, S. Xavier, E.M. Mohammed, Effect of samarium substitution on structural and magnetic properties of magnesium ferrite nanoparticles. J. Magn. Magn. Mater. 348, 14–145 (2013)

    Google Scholar 

  38. 38.

    K. Sadhana, S.R. Murthy, K. Praveena, Effect of Sm3+ on dielectric and magnetic properties of Y3Fe5O12 nanoparticles. J. Mater Sci: Mater. Electron. 25, 5130–5136 (2014)

    CAS  Google Scholar 

  39. 39.

    M. Faisal, A. Saeed, F.A. Larik, S.A. Ghumro, S. Rasheed, P.A. Channar, Wows sol-gel based synthesis and structural, morphological, electrical and magnetic characterization of Co-Sm doped M-type barium Hexaferrite materials. J. Electron. Mater. 47, 7011–7022 (2018)

    CAS  Google Scholar 

  40. 40.

    Z.R. Jia, Z.G. Gao, K.C. Kou, A.L. Feng, C.H. Zhang, B.H. Xu, G.L. Wu, Facile synthesis of hierarchical A-site cation deficiency perovskite LaxFeO3-y/RGO for high efficiency microwave absorption. Compos. Commun. 20, 100344 (2020)

    Google Scholar 

  41. 41.

    J.W. Wang, B.B. Wang, A.L. Feng, Z.R. Jia, Guanglei Wu Design of morphology-controlled and excellent electromagnetic wave absorption performance of sheet-shaped ZnCo2O4 with a special arrangement. J. Alloys Compd. 834, 155092 (2020)

    CAS  Google Scholar 

  42. 42.

    X.F. Zhou, Z.R. Jia, A.L. Feng, S.L. Qu, X.N. Wang, X.H. Liu, B.B. Wang, G.L. Wu, Synthesis of porous carbon embedded with NiCo/CoNiO2 hybrids composites for excellent electromagnetic wave absorption performance. J. Colloid Interface Sci. 575, 130–139 (2020)

    CAS  Google Scholar 

  43. 43.

    J.H. Luo, Y. Xu, D.D. Gao, Synthesis, characterization and microwave absorption properties of polyaniline/Sm-doped strontium ferrite nanocomposite. Solid State Sci. 37, 40–46 (2014)

    CAS  Google Scholar 

  44. 44.

    G.L. Wu, Y.H. Cheng, Z.H. Yang, Z.R. Jia, H.J. Wu, L.J. Yang, H.L. Li, P.Z. Guo, H.L. Lv, Design of carbon sphere/magnetic quantum dots with tunable phase compositions and boost dielectric loss behavior. Chem. Eng. J. 333, 519–528 (2018)

    CAS  Google Scholar 

  45. 45.

    W.H. Ding, W. Sun, C.F. Deng, L.X. Wang, Q.T. Zhang, Laser and electromagnetic loss properties of Perovskite SmNixFe1−xO3. J Mater Sci: Mater Electron. 28, 15050–15055 (2017)

    CAS  Google Scholar 

  46. 46.

    Y.F. Bai, W.H. Ma, Y.N. Liu, Y. Liu, J.W. Xue, K. Xu, Y.Q. Liu, G.Z. Zhao, Preparation of graphene-carbonyl iron powder@tri-iron tetroxide composite and its better microwave absorption properties. J. Mater Sci: Mater. Electron. 30, 5454–5463 (2019)

    CAS  Google Scholar 

  47. 47.

    G.W. Gan, D.N. Zhang, J. Li, G. Wang, X. Huang, Y. Yang, Y.H. Rao, F. Xu, X.X. Wang, H.W. Zhang, R. Chen, Equivalent permeability and permittivity of Sm substituted Mg-Cd ferrites for high-frequency applications. J. Alloys Compd. 819, 153059 (2020)

    CAS  Google Scholar 

  48. 48.

    H.F. Zhang, J.B. Cui, W.W. Pei, D.F. Wang, Application of the general matching law on the study of multi-coated radar absorbing materials. E3S Web of Conferences. 165 (2020) 05027.

  49. 49.

    M.S. Cao, R.R. Qin, C.J. Qiu, J. Zhu, Matching design and mismatching analysis towards radar absorbing coatings based on conducting plate. Mater. Des. 24, 391–396 (2003)

    Google Scholar 

  50. 50.

    Z.G. Gao, B.H. Xu, M.L. Ma, A.L. Feng, Y. Zhang, X.H. Liu, Z.R. Jia, G.L. Wu, Electrostatic self-assembly synthesis of ZnFe2O4 quantum dots (ZnFe2O4@C) and electromagnetic microwave absorption. Compos. B 179, 107417 (2019)

    CAS  Google Scholar 

Download references


The authors acknowledge the financial support from the National Natural Science Foundation of China (Grant Nos. 11974188 and 11304159) and the Jiangsu Natural Science Foundation of China (Grant No. BK20161512).

Author information



Corresponding author

Correspondence to Guozhi Xie.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Xie, G., Xie, N. et al. Tuning microwave absorption properties of melt-spun FeSiCo alloys based on the addition of rare earth Sm. J Mater Sci: Mater Electron 31, 17502–17510 (2020). https://doi.org/10.1007/s10854-020-04306-6

Download citation