Study of the optical and gas sensing properties of In2O3 nanoparticles synthesized by rapid sonochemical method

Abstract

Indium oxide (In2O3) nanoparticles were synthesized via a facile rapid sonochemical method. Detailed spectroscopic techniques were used to investigate optical, structural and chemical properties of the synthesized In2O3 nanoparticles. The structural analysis shows that In2O3 nanoparticles have cubic structure and are polycrystalline in nature. The morphology of the In2O3 nanoparticles examined by field emission scanning electron microscopy revealed spherical and uniformly distributed particles. Bruno emit Teller surface analyzer demonstrated that the surface areas of In2O3 nanoparticles is 45 m2/g and also confirmed that the synthesized nanoparticles are mesoporous. Raman spectra also revealed that the synthesized nanoparticles have cubic structure. In–O band stretching of the synthesized In2O3 nanoparticles was confirmed using Fourier Transform Infrared Spectroscopy. Photoluminescence spectra of the In2O3 nanoparticles showed broad and intense UV emission peak at 358 nm. Moreover, the synthesized In2O3 nanoparticles showed good sensitivity and fast response toward the hydrogen gas at lower temperature.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    Z.B. Zhou, R.Q. Cui, Q.J. Pang, Y.D. Wang, F.Y. Meng, T.T. Sun, Z.M. Ding, X.B. Yu, Preparation of indium tin oxide films and doped tin oxide films by an ultrasonic spray CVD process. Appl. Surf. Sci. 172(3–4), 245–252 (2001)

    CAS  Article  Google Scholar 

  2. 2.

    Y.X. Liang, S.Q. Li, L. Nie, Y.G. Wang, T.H. Wang, In situ synthesis of In2O3 nanowires with different diameters from indium film. Appl. Phys. Lett. 88(19), 193119 (2006)

    Article  Google Scholar 

  3. 3.

    D.W. Kim, I.S. Hwang, S.J. Kwon, H.Y. Kang, K.S. Park, Y.J. Choi, K.J. Choi, J.G. Park, Highly conductive coaxial SnO2−In2O3heterostructured nanowires for Li ion battery electrodes. Nano Lett. 7(10), 3041–3045 (2007)

    CAS  Article  Google Scholar 

  4. 4.

    M. Curreli, C. Li, Y. Sun, B. Lei, M.A. Gunderson, M.E. Thompson, C. Zhou, Selective functionalization of In2O3 nanowire mat devices for bio sensing applications. J. Am. Chem. Soc. 127(19), 6922–6923 (2005)

    CAS  Article  Google Scholar 

  5. 5.

    S. Bianchi, E. Comini, M. Ferroni, G. Faglia, A. Vomiero, G. Sberveglieri, Indium oxide quasi-monodimensional low temperature gas sensor. Sens. Actuators B Chem. 118(1–2), 204–207 (2006)

    CAS  Article  Google Scholar 

  6. 6.

    C.Y. Kuo, S.Y. Lu, T.Y. Wei, In2O3 nanorod formation induced by substrate structure. J. Cryst. Growth 285(3), 400–407 (2005)

    CAS  Article  Google Scholar 

  7. 7.

    B. Li, Y. Xie, M. Jing, G. Rong, Y. Tang, G. Zhang, In2O3 hollow microspheres: synthesis from designed In(OH)3 precursors and applications in gas sensors and photocatalysis. Langmuir 22(22), 9380–9385 (2006)

    CAS  Article  Google Scholar 

  8. 8.

    A. Gurlo, M. Ivanovskaya, N. Barsan, M. Schweizer-Berberich, U. Weimar, W. Göpel, A. Dieguez, Grain size control in Nano crystalline In2O3 semiconductor gas sensors. Sens. Actuators B Chem. 44(1–3), 327–333 (1997)

    Article  Google Scholar 

  9. 9.

    C. Goebbert, H. Bisht, N. Al-Dahoudi, R. Nonninger, M.A. Aegerter, H. Schmidt, Wet chemical deposition of crystalline, redispersable ATO and ITO nanoparticles. J. Sol–Gel Sci. Technol. 19(1–3), 201–204 (2000)

    CAS  Article  Google Scholar 

  10. 10.

    K.S. Suslick, S.-B. Choe, A.A. Cichowlas, M.W. Grinsta, Sonochemical synthesis of amorphous iron. Nature 353, 414–416 (1991)

    CAS  Article  Google Scholar 

  11. 11.

    K.S. Suslick, Sonochemistry. Science 247(4949), 1439–1445 (1990)

    CAS  Article  Google Scholar 

  12. 12.

    H. Frenzel, H. Schultes, Experimental investigation of acoustic cavitation in gaseous liquids. Z. Phys. Chem. 27, 421–424 (1934)

    Google Scholar 

  13. 13.

    M. Epifani, R. Díaz, J. Arbiol, P. Siciliano, J.R. Morante, Solution synthesis of thin films in the SnO2−In2O3 system: a case study of the mixing of sol−gel and metal-organic solution processes. Chem. Mater. 18(3), 840–884 (2006)

    CAS  Article  Google Scholar 

  14. 14.

    M.J. Alam, D.C. Cameron, Investigation of annealing effects on sol–gel deposited indium tin oxide thin films in different atmospheres. Thin Solid Films 420, 76–82 (2002)

    Article  Google Scholar 

  15. 15.

    C. Goebbert, R. Nonninger, M.A. Aegerter, H. Schmidt, Wet chemical deposition of ATO and ITO coatings using crystalline nanoparticles redispersable in solutions. Thin Solid Films 351(1–2), 79–84 (1999)

    CAS  Article  Google Scholar 

  16. 16.

    J. Ederth, P. Johnsson, G.A. Niklasson, A. Hoel, A. Hultaker, P. Heszler, C.G. Granqvist, A.R.V. Doorn, M.J. Jongerius, D. Burgard, Phys. Rev. B 68, 410 (2003)

    Article  Google Scholar 

  17. 17.

    N. Al-Dahoudi, M.A. Aegerter, Wet coating deposition of ITO coatings on plastic substrates. J. Sol–Gel. Sci. Technol. 26(1–3), 693–697 (2003)

    CAS  Article  Google Scholar 

  18. 18.

    S.M. Kim, K.H. Seo, J.H. Lee, J.J. Kim, H.Y. Lee, J.S. Lee, Preparation and sintering of nanocrystalline ITO powders with different SnO2 content. J. Eur. Ceram. Soc. 26(1–2), 73–80 (2006)

    CAS  Article  Google Scholar 

  19. 19.

    H.R. Xu, G.S. Zhu, H.Y. Zhou, A.B. Yu, Preparation of monodispersed tin-doped indium oxide nanopowders under moderate conditions. Mater. Lett. 59(1), 19–21 (2005)

    CAS  Article  Google Scholar 

  20. 20.

    J. Chandradass, K.-S. Han, D.S. Bae, J. Mater. Sci. Technol. 206, 315 (2008)

    CAS  Article  Google Scholar 

  21. 21.

    V.N. Singh, B.R. Mehta, R.K. Joshi, F.E. Kruis, S.M. Shivaprasad, Enhanced gas sensing properties of In2O3: Ag composite nanoparticle layers; electronic interaction, size and surface induced effects. Sens. Actuators B Chem. 125(2), 482–488 (2007)

    CAS  Article  Google Scholar 

  22. 22.

    C.Y. Wang, Y. Dai, J. Pezoldt, B. Lu, T. Kups, V. Cimalla, O. Ambacher, Phase stabilization and phonon properties of single crystalline rhombohedral indium oxide. Cryst. Growth Des. 8(4), 1257–1260 (2008)

    CAS  Article  Google Scholar 

  23. 23.

    S.B. Zhang, S.H. Wei, A. Zunger, H. Katayama-Yoshida, Defect physics of the CuInSe2 chalcopyrite semiconductor. Phys. Rev. B 57(16), 9642 (1998)

    CAS  Article  Google Scholar 

  24. 24.

    M. Kumar, V.N. Singh, F. Singh, K.V. Lakshmi, B.R. Mehta, J.P. Singh, On the origin of photoluminescence in indium oxide octahedron structures. Appl. Phys. Lett. 92(17), 171907 (2008)

    Article  Google Scholar 

  25. 25.

    A.J.C. Lanfredi, R. Geraldes, O.M. Berengue, W.R. Leite, A.J. Chiquito, J. Appl. Phys. 105, 23708 (2009)

    Article  Google Scholar 

  26. 26.

    G. Gaggiotti, A. Galdikas, S. Kaciulis, G. Mattogno, A. Setkus, Temperature dependencies of sensitivity and surface chemical composition of SnOx gas sensors. Sens. Actuators B Chem. 25(1–3), 516–519 (1995)

    CAS  Article  Google Scholar 

  27. 27.

    W.Y. Chung, T.H. Kim, Y.H. Hong, D.D. Lee, Characterization of porous tin oxide thin films and their application to microsensor fabrication. Sens. Actuators B Chem. 25(1–3), 482–485 (1995)

    CAS  Article  Google Scholar 

  28. 28.

    K. Daoudi, C.S. Sandu, A. Moadhen, C. Ghica, B. Canut, V.S. Teodorescu, M.G. Blanchin, J.A. Roger, M. Oueslati, B.Bessais, ITO spin-coated porous silicon structures. Mater. Sci. Eng. B 101(1–3), 262–265 (2003)

    Article  Google Scholar 

  29. 29.

    G.J. Li, X.H. Zhang, S. Kawi, Relationships between sensitivity, catalytic activity, and surface areas of SnO2 gas sensors. Sens. Actuators B Chem. 60(1), 64–70 (1999)

    CAS  Article  Google Scholar 

  30. 30.

    G.J. Li, S. Kawi, High-surface-area SnO2: a novel semiconductor-oxide gas sensor. Mater. Lett. 34(1–2), 99–102 (1998)

    Article  Google Scholar 

  31. 31.

    H. Dong, Z. Li, Z. Ding, H. Pan, X. Wang, X. Fu, Nanoplates of α-SnWO4 and SnW3O9 prepared via a facile hydrothermal method and their gas-sensing property. Sens. Actuators B Chem. 140(2), 623–628 (2009)

    CAS  Article  Google Scholar 

  32. 32.

    M.H. Seo, M. Yuasa, T. Kida, J.S. Huh, K. Shimanoe, N. Yamazoe, Gas sensing characteristics and porosity control of nanostructured films composed of TiO2 nanotubes. Sens. Actuators B Chem. 137(2), 513–520 (2009)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The support of this work has been provided by King Abdul-Aziz City for Science and Technology (KACST). The funding for this work has been came through project 09-NAN772-04, which is a as part of the National Science, Technology and Innovation Plan and all the synthesis and characterizations of the prepared sample has been carried out in the Centre of excellence and Nanotechnology (CENT) & KFUPM.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hafeez Ullah.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ullah, H., Yamani, Z.H., Qurashi, A. et al. Study of the optical and gas sensing properties of In2O3 nanoparticles synthesized by rapid sonochemical method. J Mater Sci: Mater Electron 31, 17474–17481 (2020). https://doi.org/10.1007/s10854-020-04303-9

Download citation