Ethanol sensor based on microrod-like La-doped barium stannate

Abstract

Due to its importance in human health and environmental monitoring, ethanol sensing has generated large research interest across the globe. In this work, we report a simple co-precipitation method to synthesize La-doped BaSnO3 and evaluate its ethanol sensing properties. Electron microscopy and X-ray diffraction analyses revealed formation of crystalline BaSnO3 having rod-like shape, few microns in length and 1–2 µm in width. The optimal sensing performance was achieved when operated at 220 °C for 4 wt% La-doped BaSnO3 microrods for which a response as high as 48 was obtained against 100 ppm of ethanol exposure, whereas the undoped BaSnO3 exhibited its best performance (although much lower response) at 260 °C. Multiple characterization techniques revealed that the enhancement of the sensor performance by incorporation of La was due to changes in the physico-chemical properties like specific surface area, oxygen content and electronic bandgap of the BaSnO3. The high repeatability, high selectivity to ethanol, fast response and recovery times, and low detection limit of 0.01 ppm suggest good potential for the 4% La-doped BaSnO3 film as a low cost ethanol sensor.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    J. Wu, D. Zhang, Y. Cao, J. Colloid Interface Sci. 529, 556 (2018)

    CAS  Google Scholar 

  2. 2.

    J.-J. Ho, Y.K. Fang, K.H. Wu, W.T. Hsieh, C.H. Chen, G.S. Chen, M.S. Ju, J.-J. Lin, S.B. Hwang, Sens. Actuators B 50, 227 (1998)

    CAS  Google Scholar 

  3. 3.

    K. Warriner, A. Morrissey, J. Alderman, G. King, P. Treloar, P.M. Vadgama, Sens. Actuators B 84, 200 (2002)

    CAS  Google Scholar 

  4. 4.

    A. Yazıcı, N. Dalbul, A. Altındal, B. Salih, Ö Bekaroğlu, Sens. Actuators B 202, 14 (2014)

    Google Scholar 

  5. 5.

    D. Zhang, C. Jiang, J. Wu, Sens. Actuators B 273, 176 (2018)

    CAS  Google Scholar 

  6. 6.

    S. Neccaroğlu Işık, G. Keser, B. Karaoğlan, A. Can Ömür, Altındal, G. Gümrükçü, Köse, Synth. Met. 246, 7 (2018)

    Google Scholar 

  7. 7.

    P. Tiwary, N. Chakrabarty, A.K. Chakraborty, R. Mahapatra, Mater. Today Proc. 11, 875 (2019)

    CAS  Google Scholar 

  8. 8.

    H. Eslami, M.H. Ehrampoush, A. Esmaeili, A.A. Ebrahimi, M.T. Ghaneian, H. Falahzadeh, M.H. Salmani, Mater. Chem. Phys. 224, 65 (2019)

    CAS  Google Scholar 

  9. 9.

    S. Gupta Chatterjee, S. Chatterjee, A.K. Ray, A.K. Chakraborty, Sens. Actuators B 221, 1170 (2015)

    CAS  Google Scholar 

  10. 10.

    X. Chu, P. Dai, S. Liang, A. Bhattacharya, Y. Dong, M. Epifani, Physica E 106, 326 (2018)

    Google Scholar 

  11. 11.

    X. Chu, J. Wang, L. Bai, Y. Dong, W. Sun, Mater. Sci. Eng. B 228, 45 (2018)

    CAS  Google Scholar 

  12. 12.

    X. Chu, J. Wang, L. Bai, Y. Dong, W. Sun, W. Zhang, Sens. Actuators B 255, 2058 (2018)

    CAS  Google Scholar 

  13. 13.

    I. Chakraborty, N. Chakrabarty, A. Senapati, A.K. Chakraborty, J. Phys. Chem. C 122, 27180 (2018)

    CAS  Google Scholar 

  14. 14.

    P. Tiwary, R. Mahapatra, A.K. Chakraborty, J. Mater. Sci. 30(6), 5464–5469 (2019)

    CAS  Google Scholar 

  15. 15.

    Y. Shimizu, Y. Fukuyama, T. Narikiyo, H. Arai, T. Seiyama, Chem. Lett. 14, 377 (1985)

    Google Scholar 

  16. 16.

    X.H. Wu, Y. De Wang, H.L. Liu, Y.F. Li, Z.L. Zhou, Mater. Lett. 56, 732 (2002)

    CAS  Google Scholar 

  17. 17.

    H.-J. Lin, J.P. Baltrus, H. Gao, Y. Ding, C.-Y. Nam, P. Ohodnicki, P.-X. Gao, ACS Appl. Mater. Interfaces 8, 8880 (2016)

    CAS  Google Scholar 

  18. 18.

    T.A. Blank, L.P. Eksperiandova, K.N. Belikov, Sens. Actuators B 228, 416 (2016)

    CAS  Google Scholar 

  19. 19.

    H. Wang, Z. Guo, W. Hao, L. Sun, Y. Zhang, E. Cao, Mater. Lett. 234, 40 (2019)

    CAS  Google Scholar 

  20. 20.

    Q. Liu, Y. He, H. Li, B. Li, G. Gao, L. Fan, J. Dai, Appl. Phys. Express 7, 033006 (2014)

    Google Scholar 

  21. 21.

    U. Lampe, J. Gerblinger, H. Meixner, Sens. Actuators B 25, 657 (1995)

    CAS  Google Scholar 

  22. 22.

    U. Lampe, J. Gerblinger, H. Meixner, Sens. Actuators B 26, 97 (1995)

    CAS  Google Scholar 

  23. 23.

    B. Ostrick, M. Fleischer, U. Lampe, H. Meixner, Sens. Actuators B 44, 601 (1997)

    CAS  Google Scholar 

  24. 24.

    S. Tao, F. Gao, X. Liu, O.T. Sørensen, Sens. Actuators B 71, 223 (2000)

    CAS  Google Scholar 

  25. 25.

    J. Cerdà, J. Arbiol, G. Dezanneau, R. Díaz, J.R. Morante, Sens. Actuators B 84, 21 (2002)

    Google Scholar 

  26. 26.

    X. Chu, Mater. Sci. Eng. B 106, 305 (2004)

    Google Scholar 

  27. 27.

    Y.H. Ochoa, F. Schipani, C.M. Aldao, J.E. Rodríguez-Páez, M.A. Ponce, J. Mater. Res. 30, 3423 (2015)

    CAS  Google Scholar 

  28. 28.

    G. Wang, J. Bai, C. Shan, D. Zhang, N. Lu, Q. Liu, Z. Zhou, S. Wang, C. Liu, Mater. Lett. 205, 169 (2017)

    CAS  Google Scholar 

  29. 29.

    C.V.G. Reddy, S.V. Manorama, V.J. Rao, A. Lobo, S.K. Kulkarni, Thin Solid Films 348, 261 (1999)

    CAS  Google Scholar 

  30. 30.

    A. Bhattacharya, X. Chu, Y. Dong, S. Liang, A.K. Chakraborty, Vacuum (2020). https://doi.org/10.1016/j.vacuum.2020.109645

    Article  Google Scholar 

  31. 31.

    K.K. James, P.S. Krishnaprasad, K. Hasna, M.K. Jayaraj, J. Phys. Chem. Solids 76, 64 (2015)

    CAS  Google Scholar 

  32. 32.

    N. Rajamanickam, P. Soundarrajan, S.M. Senthil Kumar, K. Jayakumar, K. Ramachandran, S.M.S. Kumar, K. Jayakumar, K. Ramachandran, Electrochim. Acta 296, 771 (2018)

    Google Scholar 

  33. 33.

    W.Z. Lu, S.L. Jiang, D.X. Zhou, S.P. Gong, Sens. Actuators A 80, 35 (2000)

    CAS  Google Scholar 

  34. 34.

    Q. Liu, J. Dai, H. Li, B. Li, Y. Zhang, K. Dai, S. Chen, J. Alloys Compd. 647, 959 (2015)

    CAS  Google Scholar 

  35. 35.

    A. Bhattacharya, Y. Jiang, Q. Gao, X. Chu, Y. Dong, S. Liang, A.K. Chakraborty, J. Mater. Res. 34, 2067 (2019)

    CAS  Google Scholar 

  36. 36.

    A. Bhattacharya, X. Chu, Q. Gao, X. Li, Y. Dong, S. Liang, A.K. Chakraborty, Appl. Surf. Sci. 504, 144289 (2019)

    Google Scholar 

  37. 37.

    N. Chakrabarty, A.K. Chakraborty, Electrochim. Acta 297, 173 (2019)

    CAS  Google Scholar 

  38. 38.

    S.P. Mondal, A. Dhar, S.K. Ray, A.K. Chakraborty, J. Appl. Phys. 105, 084309 (2009)

    Google Scholar 

  39. 39.

    S.M.D. Watson, K.S. Coleman, A.K. Chakraborty, ACS Nano 2, 643 (2008)

    CAS  Google Scholar 

  40. 40.

    J. Tauc, Mater. Res. Bull. 3, 37–46 (1968)

    CAS  Google Scholar 

  41. 41.

    R.K. Agrawalla, V. Meriga, R. Paul, A.K. Chakraborty, A.K. Mitra, Expr. Polym. Lett. 10(9), 780 (2016)

    CAS  Google Scholar 

  42. 42.

    C. Huang, X. Wang, X. Wang, X. Liu, Q. Shi, X. Pan, X. Li, RSC Adv. 6(30), 25379–25387 (2016)

    CAS  Google Scholar 

  43. 43.

    T.P. Nguyen, J. Ip, P. Jolinat, P. Destruel, Appl. Surf. Sci. 172, 75 (2001)

    CAS  Google Scholar 

  44. 44.

    M.F. Sunding, K. Hadidi, S. Diplas, O.M. Løvvik, T.E. Norby, A.E. Gunnæs, J. Electron Spectros. Relat. Phenomena 184, 399 (2011)

    CAS  Google Scholar 

  45. 45.

    L. Gao, F. Ren, Z. Cheng, Y. Zhang, Q. Xiang, J. Xu, CrystEngComm 17, 3268 (2015)

    CAS  Google Scholar 

  46. 46.

    M.E. Franke, T.J. Koplin, U. Simon, Small 2, 36 (2006)

    CAS  Google Scholar 

  47. 47.

    S.S. Kim, H.G. Na, S.-W. Choi, D.S. Kwak, H.W. Kim, J. Phys. D 45, 205301 (2012)

    Google Scholar 

  48. 48.

    D. Zappa, E. Comini, G. Sberveglieri, Nanotechnology 24, 444008 (2013)

    CAS  Google Scholar 

  49. 49.

    G.K. Mani, J.B.B. Rayappan, Sens. Actuators B 183, 459 (2013)

    CAS  Google Scholar 

  50. 50.

    C. Wang, X. Cui, J. Liu, X. Zhou, X. Cheng, P. Sun, X. Hu, X. Li, J. Zheng, G. Lu, ACS Sens. 1, 131 (2016)

    CAS  Google Scholar 

  51. 51.

    Z.S. Hosseini, A.I. zad, A. Mortezaali, Sens. Actuators B 207, 865 (2015)

    CAS  Google Scholar 

  52. 52.

    L. Zhu, W. Zeng, Sens. Actuators A 267, 242 (2017)

    CAS  Google Scholar 

  53. 53.

    T. Maekawa, K. Kurosaki, S. Yamanaka, J. Alloys Compd. 416, 214 (2006)

    CAS  Google Scholar 

  54. 54.

    N. Yamazoe, Y. Kurokawa, T. Seiyama, Sens. Actuators 4, 283 (1983)

    CAS  Google Scholar 

  55. 55.

    L. Wang, J. Deng, Z. Lou, T. Zhang, Sens. Actuators B 201, 1 (2014)

    CAS  Google Scholar 

  56. 56.

    Y. Liu, S. Yang, Y. Lu, N.V. Podval’naya, W. Chen, G.S. Zakharova, Appl. Surf. Sci. 359, 114 (2015)

    CAS  Google Scholar 

  57. 57.

    S.R. Morrison, Sens. Actuators 12, 425 (1987)

    CAS  Google Scholar 

  58. 58.

    A. Staerz, Y. Liu, U. Geyik, H. Brinkmann, U. Weimar, T. Zhang, N. Barsan, Sens. Actuators B 291, 378 (2019)

    CAS  Google Scholar 

Download references

Acknowledgements

This project was funded by National Natural Science Foundation of China (Nos. 61671019 and 61971003).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Xiangfeng Chu or Shiming Liang or Amit K. Chakraborty.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bhattacharya, A., Zhang, Y., Wu, H. et al. Ethanol sensor based on microrod-like La-doped barium stannate. J Mater Sci: Mater Electron 31, 17461–17473 (2020). https://doi.org/10.1007/s10854-020-04302-w

Download citation