Development of a quartz crystal microbalance biodetector based on cellulose nanofibrils (CNFs) for glycine

Abstract

The performance of a quartz crystal microbalance (QCM) used as a sensor/detector relies on the performance and quality of the film coated onto the quartz crystal sensor. This study focuses on the sensor coating preparation for the detection of glycine. Cellulose nanofibrils (CNFs), natural polymers, were coated on a quartz crystal (QC) surface by a spin-coating method. The prepared CNF-coated QC was characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), cyclic voltammetry (CV), Fourier transform infrared spectrophotometry-attenuated total reflectance (FTIR-ATR), Raman spectroscopy, and water contact angle (WCA). The stable and fully covered QCs without further modification were then employed for aqueous glycine detection. Detection with a wide concentration range (3–1000 μg/mL) of glycine was studied. The resonance frequency shifts obtained from the samples during each step of the measurement are presented and discussed. The data show a linear range of detection (R2 = 0.9945) for 6–500 μg/mL of glycine and a limit of detection (LOD) of 8 μg/mL. This study indicates that the CNF-coated QCM has a potential application as a biodetector for glycine detection.

This is a preview of subscription content, log in to check access.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    Z. Li, X. Zheng, J. Zheng, A non-enzymatic sensor based on well-stable Au@Ag nanoparticles for sensitive detection of H2O2. New J. Chem. 40, 2115–2120 (2016)

    CAS  Google Scholar 

  2. 2.

    Y. Wang, L. He, K. Huang, Y. Chen, S. Wang, Z. Liu, D. Li, Recent advances in nanomaterial-based electrochemical and optical sensing platforms for microRNA assays. Analyst 144, 2849–2866 (2019)

    CAS  Google Scholar 

  3. 3.

    Z. Wang, S. Wu, J. Wang, A. Yu, G. Wei, Carbon nanofiber-based functional nanomaterials for sensor applications. Nanomaterials 9(7), 1045 (2019)

    CAS  Google Scholar 

  4. 4.

    T. Benselfelt, J. Engström, L. Wagberg, Supramolecular double networks of cellulose nanofibrils and algal polysaccharides with excellent wet mechanical properties. Green Chem 20, 2558–2570 (2018)

    CAS  Google Scholar 

  5. 5.

    G. Teng, S. Lin, D. Xu, Y. Heng, D. Hu, Renewable cellulose separator with good thermal stability prepared via phase inversion for high-performance supercapacitors. J Mater Sci: Mater Electron. 31, 7916–7926 (2020)

    CAS  Google Scholar 

  6. 6.

    N. Pahimanolis, U. Hippi, L.S. Johansson, T. Saarinen, N. Houbenov, J. Ruokolainen, J. Seppala, Surface functionalization of nanofibrillated cellulose using click-chemistry approach in aqueous media. Cellulose 18, 1201–1212 (2011)

    CAS  Google Scholar 

  7. 7.

    H. Orelma, I. Filpponen, L. Johansson, M. Osterberg, O. Rojas, J. Laine, Surface functionalized nanofibrillar cellulose (NFC) film as a platform for immunoassays and diagnostics. Biointerphases 7, 1–4 (2012)

    Google Scholar 

  8. 8.

    Y. Zhang, R.G. Carbonell, O.J. Rojas, Bioactive cellulose nanofibrils for specific human IgG binding. Biomacromol 14, 4161–4168 (2013)

    CAS  Google Scholar 

  9. 9.

    O. Rojas, H. Orelma, I. Filpponen, L. Johansson, M. Osterberg, J. Laine, Generic method for attaching biomolecules via avidin–biotin complexes immobilized on films of regenerated and nanofibrillar cellulose. Biomacromol 13, 2802–2810 (2012)

    Google Scholar 

  10. 10.

    J. Zhao, C. Lu, X. He, X. Zhang, W. Zhang, X. Zhang, Polyethyleneimine-grafted cellulose nanofibril aerogels as versatile vehicles for drug delivery. ACS Appl. Mater. Interfaces. 7(4), 2607–2615 (2015)

    CAS  Google Scholar 

  11. 11.

    J.C. Courtenay, R.I. Sharma, J.L. Scott, Recent advances in modified cellulose for tissue culture applications. Molecules 23(3), 654 (2018)

    Google Scholar 

  12. 12.

    X. Niu, Y. Liu, Y. Song, J. Han, H. Pan, Rosin modified cellulose nanofiber as a reinforcing and co-antimicrobial agents in poly lactic acid /chitosan composite film for food packaging. Carbohydr. Polym. 183, 102–109 (2018)

    CAS  Google Scholar 

  13. 13.

    S. Sulaiman, M.N. Mokhtar, M.N. Naim, A.S. Baharuddin, A. Sulaiman, A review: potential usage of cellulose nanofibers (CNF) for enzyme immobilization via covalent interactions. Appl. Biochem. Biotechnol. 175, 1817–1842 (2015)

    CAS  Google Scholar 

  14. 14.

    G. Zhu, X. Zhu, Q. Fan, X. Wan, Raman spectra of amino acids and their aqueous solutions. Spectrochim. Acta Part A. 78, 1187–1195 (2011)

    Google Scholar 

  15. 15.

    H. Singh, K.K. Bamzai, Effect of glycine on structural, optical and dielectric properties of solution grown samarium chloride coordinated with salicylic acid. J. Mater. Sci. Mater. Electron. 30, 3833–3846 (2019)

    CAS  Google Scholar 

  16. 16.

    W.H. Zhang et al., Monitoring hippocampal glycine with the computationally designed optical sensor GlyFS. Nat. Chem. Biol. 14, 861–869 (2018)

    CAS  Google Scholar 

  17. 17.

    Y. Lu et al., Glycine prevents pressure overload induced cardiac hypertrophy mediated by glycine receptor. Biochem. Pharmacol. 123, 40–51 (2017)

    CAS  Google Scholar 

  18. 18.

    M. Davids, J.D.T. Ndika, G.S. Salomons, H.J. Blom, T. Teerlink, Promiscuous activity of arginine: glycine amidinotransferase is responsible for the synthesis of the novel cardiovascular risk factor homoarginine. FEBS Lett. 586, 3653–3657 (2012)

    CAS  Google Scholar 

  19. 19.

    M. Adeva-Andany, G. Souto-Adeva, E. Ameneiros-Rodriguez, C. Fernandez-Fernandez, C. Donapetry-Garcia, A. Dominguez-Montero, Insulin resistance and glycine metabolism in humans. Amino Acids 50, 11–27 (2018)

    CAS  Google Scholar 

  20. 20.

    M. Magnusson, T.J. Wang, C. Clish, G. Engström, P. Nilsson, R.E. Gerszten, O. Melander, Dimethylglycine deficiency and the development of diabetes. Diabetes 64, 3010–3016 (2015)

    CAS  Google Scholar 

  21. 21.

    I. Baric, S. Erdol, H. Saglam, M. Lovric, R. Belužić, O. Vugrek, H.J. Blom, K. Fumić, Glycine N-Methyltransferase deficiency: a member of dysmethylating liver disorders. JIMD Rep. 31, 101–106 (2017)

    Google Scholar 

  22. 22.

    R.C. Geck, A. Toker, Nonessential amino acid metabolism in breast cancer. Adv. Biol. Regul. 62, 11–17 (2016)

    CAS  Google Scholar 

  23. 23.

    G. Chakraborty, P. Dhar, V. Katiyar, G. Pugazhenthi, Applicability of Fe-CNC/GR/PLA composite as potential sensor for biomolecules. J. Mater. Sci.: Mater. Electron. 31, 5984–5999 (2020)

    CAS  Google Scholar 

  24. 24.

    M.A. Razak, P.S. Begum, B. Viswanath, S. Rajagopal, Multifarious beneficial effect of nonessential amino acid, glycine: a review. Oxid. Med. Cell Longev. 2017, 1–8 (2017)

    Google Scholar 

  25. 25.

    M.J. Fischer, Amine coupling through EDC/NHS: a practical approach. Surface plasmon resonance (Humana Press, Totowa, 2010)

    Google Scholar 

  26. 26.

    D.M. Kalaskar, R.V. Ulijn, J.E. Gough, M.R. Alexander, D.J. Scurr, W.W. Sampson, S.J. Eichhorn, Characterization of amino acid modified cellulose surfaces using ToF-SIMS and XPS. Cellulose 17, 747–756 (2010)

    CAS  Google Scholar 

  27. 27.

    K. Hilpert, D.F. Winkler, R.E. Hancock, Cellulose-bound peptide arrays: preparation and applications. Biotechnol Genet Eng Rev. 24, 31–106 (2007)

    CAS  Google Scholar 

  28. 28.

    E. Haghighi, S. Zeinali, Nanoporous MIL-101(Cr) as a sensing layer coated on a quartz crystal microbalance (QCM) nanosensor to detect volatile organic compounds (VOCs). RSC Adv. 9, 24460–24470 (2019)

    CAS  Google Scholar 

  29. 29.

    S. Turkdogan, Engineered II–VI quaternary alloys and their humidity sensing performance analyzed by QCM. J. Mater. Sci.: Mater. Electron. 30, 10427–10434 (2019)

    CAS  Google Scholar 

  30. 30.

    C. Jiang, T. Cao, W. Wu, J. Song, Y. Jin, Novel approach to prepare ultrathin lignocellulosic film for monitoring enzymatic hydrolysis process by quartz crystal microbalance. ACS Sustain. Chem. Eng. 5, 3837–3844 (2017)

    CAS  Google Scholar 

  31. 31.

    B.P. Wilson et al., Structural distinction due to deposition method in ultrathin films of cellulose nanofibers. Cellulose 25, 1715–1724 (2018)

    CAS  Google Scholar 

  32. 32.

    Y. Yao, X. Huang, B. Zhang, Z. Zhang, D. Hou, Z. Zhou, Facile fabrication of high sensitivity cellulose nanocrystals based QCM humidity sensors with asymmetric electrode structure. Sens. Actuators: B 302, 127192 (2020)

    CAS  Google Scholar 

  33. 33.

    D.L. Osorio-Arrieta et al., Reduction of the measurement time by the prediction of the steady-state response for quartz crystal microbalance gas sensors. Sensors 18, 2475 (2018)

    Google Scholar 

  34. 34.

    J. Im, E.S. Sterner, T.M. Swager, Integrated gas sensing system of SWCNT and cellulose polymer concentrator for benzene, toluene, and xylenes. Sensors 16, 183 (2016)

    Google Scholar 

  35. 35.

    C.L. Pirich, R.A. de Freitas, R.M. Torresi, G.F. Picheth, M.R. Sierakowski, Piezoelectric immunochip coated with thin films of bacterial cellulose nanocrystals for dengue detection. Biosens. Bioelectron. 92, 47–53 (2017)

    CAS  Google Scholar 

  36. 36.

    T. Mohan et al., Nano- and micropatterned polycaprolactone cellulose composite surfaces with tunable protein adsorption, fibrin clot formation, and endothelial cellular response. Biomacromol 20, 2327–2337 (2019)

    CAS  Google Scholar 

  37. 37.

    S. Atay, K. Piskin, F. Yılmaz, C. Çakır, H. Yavuzd, A. Denizli, Quartz crystal microbalance based biosensors for detecting highly metastatic breast cancer cells via their transferrin receptors. Anal. Methods. 8, 153–161 (2016)

    CAS  Google Scholar 

  38. 38.

    A. Afzal, A. Mujahid, R. Schirhagl, S.Z. Bajwa, U. Latif, S. Feroz, Gravimetric viral diagnostics: QCM based biosensors for early detection of viruses. Chemosensors. 5(1), 7 (2017)

    Google Scholar 

  39. 39.

    Sh Zhang, H. Bai, J. Luo, P. Yang, J. Cai, A recyclable chitosan-based QCM biosensor for sensitive and selective detection of breast cancer cells in real time. Analyst. 139, 6259–6265 (2014)

    CAS  Google Scholar 

  40. 40.

    C. Tonda-Turo, I. Carmagnola, G. Ciardelli, Quartz crystal microbalance with dissipation monitoring: a powerful method to predict the in vivo behavior of bioengineered surfaces. Front. Bioeng. Biotechnol. 6, 158 (2018)

    Google Scholar 

  41. 41.

    R. Fernandez, P. Garcia, M. Garcia, J.V. Garcia, Y. Jimenez, A. Arnau, Design and validation of a 150 MHz HFFQCM sensor for bio-sensing applications. Sensors 17, 2057 (2017)

    Google Scholar 

  42. 42.

    S. Damiati, M. Peacock, R. Mhanna, S. Søpstad, U.B. Sleytr, B. Schuster, Bioinspired detection sensor based on functional nanostructures of S-proteins to target the folate receptors in breast cancer cells. Sens. Actuators B. 267, 224–230 (2018)

    CAS  Google Scholar 

  43. 43.

    X. Li, S. Song, Q. Shuai, Y. Pei, T. Aastrup, Y. Pei, Zh Pei, Real-time and label-free analysis of binding thermodynamics of carbohydrate-protein interactions on unfixed cancer cell surfaces using a QCM biosensor. Sci. Rep. 5, 14066 (2015)

    CAS  Google Scholar 

  44. 44.

    C. Yao, Y. Xiang, K. Deng, H. Xia, W. Fu, Sensitive and specific HBV genomic DNA detection using RCA-based QCM biosensor. Sens. Actuators B. 181, 382–387 (2013)

    CAS  Google Scholar 

  45. 45.

    Y. Zhang, O.J. Rojas, Immunosensors for C-reactive protein based on ultrathin films of carboxylated cellulose nanofibrils. Biomacromol 18(2), 526–534 (2017)

    CAS  Google Scholar 

  46. 46.

    G.Z. Sauerbrey, The use of quartz oscillators for weighing thin layers and for microweighing. Phys. 155, 206–222 (1959)

    CAS  Google Scholar 

  47. 47..

    V.M. Mecea, From quartz crystal microbalance to fundamental principles of mass measurements. Anal. Lett. 38, 753–767 (2005)

    CAS  Google Scholar 

  48. 48.

    J. Vincent Edwards, K.R. Fontenot, N.T. Prevost, N. Pircher, F. Liebner, B.D. Condon, Preparation, characterization and activity of a peptide-cellulosic aerogel protease sensor from cotton. Sensors. 16(11), 1789 (2016)

    Google Scholar 

  49. 49.

    H. Kargarzadeh, I. Ahmad, S. Thomas, A. Dufresne, Raman Spectroscopy of CNC-and CNF-Based Nanocomposites. Handbook of Nanocellulose and Cellulose Nanocomposites. Chapter 18 (Wiley, Hoboken, 2017)

    Google Scholar 

  50. 50.

    B. Sjöberg, S. Foley, B. Cardey, M. Enescu, An experimental and theoretical study of the amino acid side chain Raman bands in proteins. Spectrochim. Acta Part A. 128, 300–311 (2014)

    Google Scholar 

  51. 51.

    S. Palantöken, K. Bethke, V. Zivanovic, G. Kalinka, J. Kneipp, K. Rademann, Cellulose hydrogels physically crosslinked by glycine: synthesis, characterization, thermal and mechanical properties. J. Appl. Polym. Sci. 137, 48380 (2019)

    Google Scholar 

  52. 52.

    K.K. Kanazawa, J.G. Gordon, Frequency of a quartz microbalance in contact with liquid. Anal. Chem. 57, 1770–1771 (1905)

    Google Scholar 

  53. 53.

    J.N. Miller, J.C. Miller, Statistics and Chemometrics for Analytical Chemistry, 5th edn. (Pearson Education, London, 2005)

    Google Scholar 

Download references

Acknowledgements

We acknowledge the Iran National Science Foundation (INSF) for financial supports. The INSF supported this work with Grant Number 940011.

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. Iraji zad.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hosseini, M.S., Iraji zad, A., Vossoughi, M. et al. Development of a quartz crystal microbalance biodetector based on cellulose nanofibrils (CNFs) for glycine. J Mater Sci: Mater Electron 31, 17451–17460 (2020). https://doi.org/10.1007/s10854-020-04301-x

Download citation