Skip to main content
Log in

Effect of deposition time on photoelectrochemical performance of chemically grown Bi2Se3-sensitized TiO2 nanostructure solar cells

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This paper explore the ability of bismuth selenide (Bi2Se3) as an alternative light sensitizer for photoelectrochemical (PEC) solar cell. Herein, we applied novel chemical route, namely, chemical bath deposition (CBD) for growth of Bi2Se3 nanoparticles over spin-coated TiO2 at room temperature. The structural, surface morphological, and optical properties of TiO2/Bi2Se3 films are systematically studied. The deposition time for the growth of Bi2Se3 using CBD can enable to tune the size of Bi2Se3 nanoparticles over porous TiO2 which significantly influences the physical properties of resultant heterostructure. The potential of Bi2Se3 nanoparticles in PEC solar cell is demonstrated by preparing FTO|TiO2|Bi2Se3|polysulphide electrolyte|carbon-coated FTO device structure and tested with current density–voltage (J-V) and electrochemical impedance spectroscopy (EIS) measurements. The result presented in this study established that the photoconversion efficiency and electron life time of device are affected by deposition time for Bi2Se3 using CBD. The J-V measurement done with above-proposed devices shows maximum photoconversion efficiency around 0.152% for 20 min deposited Bi2Se3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. T. Dittrich, A. Belaidi, A. Ennaoui, Sol. Energy Mater. Sol. Cells. 95, 1527–1536 (2011)

    Article  CAS  Google Scholar 

  2. W. Wang, X. Wang, N. Wang, X. Ning, H. Li, D. Lu, X. Liu, Q. Zhang, Y. Huang, Nanoscale Res. Lett. 13, 295 (2018)

    Article  Google Scholar 

  3. Q. Zhang, J. Su, X. Zhang, J. Li, A. Zhang, Y. Gao, J. Alloys Compd. 545, 105–110 (2012)

    Article  CAS  Google Scholar 

  4. A. Kongkanand, K. Tvrdy, K. Takechi, M. Kuno, P.V. Kamat, J. Am. Chem. Soc. 130, 4007–4015 (2008)

    Article  CAS  Google Scholar 

  5. S. Maiti, F. Azlan, Y. Jadhav, J. Dana, P. Anand, S.K. Haram, G.R. Dey, H.N. Ghosh, Sol. Energy 181, 195–202 (2019)

    Article  CAS  Google Scholar 

  6. Y. Deng, S. Li, X. Li, R. Wang, Sol. Energy Mater. Sol. Cells 215, 110594 (2020)

    Article  CAS  Google Scholar 

  7. S.H. Im, C.S. Lim, J.A. Chang, Y.H. Lee, N. Maiti, H.J. Kim, MdK Nazeeruddin, M. Gratzel, S. Seok, Nano Lett. 11, 4789–4793 (2011)

    Article  CAS  Google Scholar 

  8. T.T. Ngo, S. Chavhan, I. Kosta, O. Miguel, H.J. Grande, R. Tena-Zaera, ACS Appl. Mater. Interfaces 6, 2836–2841 (2014)

    Article  CAS  Google Scholar 

  9. F. Askari, D. Fathi, M. Eskandari, J. Mater. Sci. 31, 1789–1796 (2020)

    CAS  Google Scholar 

  10. S.K. Kokate, A.T. Supekar, P.K. Baviskar, B.M. Palve, S.R. Jadkar, K.C. Mohite, H.M. Pathan, Mater. Sci. Semicond. Process. 80, 179–183 (2018)

    Article  CAS  Google Scholar 

  11. S.N. Vijayaraghavan, A. Ashok, G. Gopakumar, H. Menon, S.V. Nair, M. Shanmugam, Mater. Renew. Sustain Energy 7, 12 (2018)

    Article  Google Scholar 

  12. F. Deng, X. Mei, X. Wan, R. Fan, Q. Wu, X. Yan, L. Wan, D. Shi, Y. Xiong, J. Mater. Sci. 26, 7635–7638 (2015)

    CAS  Google Scholar 

  13. P.R. Nikam, P.K. Baviskar, S. Majumder, J.V. Sali, B.R. Sankapal, J. Colloid Interface Sci. 524, 148–155 (2018)

    Article  CAS  Google Scholar 

  14. V. Baviskar, D. Salunkhe, H. Tarkas, R. Wagh, P. Baviskar, R. Patil, Optik 207, 163890 (2020)

    Article  CAS  Google Scholar 

  15. S. Dagher, Y. Haik, N. Tit, A. Ayesh, J. Mater. Sci. 27, 3328–3340 (2016)

    CAS  Google Scholar 

  16. R.A. Wagh, A.N. Kulkarni, P.K. Baviskar, H.M. Pathan, R.S. Patil, Mater. Renew. Sustain Energy 7, 13 (2018)

    Article  Google Scholar 

  17. D.B. Salunkhe, D.P. Dubal, J.V. Sali, B.R. Sankapal, Mater. Sci. Semicond. Process. 30, 335–342 (2015)

    Article  CAS  Google Scholar 

  18. S.A. Pawar, D.S. Patil, J.H. Kim, P.S. Patil, J.C. Shin, Opt. Mater. 66, 644–650 (2017)

    Article  CAS  Google Scholar 

  19. S.S. Patil, S.S. Mali, C.K. Hong, P.N. Bhosale, Mater. Sci. Semicond. Process. 105, 104727 (2020)

    Article  CAS  Google Scholar 

  20. D.K. Kumar, J. Loskot, J. Kriz, N. Bennett, H.M. Upadhyaya, V. Sadhu, C.V. Reddy, K.R. Reddy, Sol. Energy 199, 570–574 (2020)

    Article  Google Scholar 

  21. S.S. Patil, K.V. Khot, S.S. Mali, C.K. Hong, P.N. Bhosale, Ind. Eng. Chem. Res. 59, 10868–10881 (2020)

    Article  CAS  Google Scholar 

  22. D. Zaho, G. Tan, Appl. Thermal Eng. 66, 15–24 (2014)

    Article  Google Scholar 

  23. V. Gunasekaran, G.H. Park, M. Suemitsu, H. Fukidome, Mater. Sci. Semicond. Process. 68, 128–132 (2017)

    Article  CAS  Google Scholar 

  24. S. Cho, N.P. Butch, J. Paglione, M.S. Fuhrer, Nano Lett. 11, 1925–1927 (2011)

    Article  CAS  Google Scholar 

  25. Y. Zhang, K. He, C.Z. Chang, C.L. Song, L.L. Wang, X. Chen, J.F. Jia, Z. Fang, X. Dai, W.Y. Shan, S.Q. Shen, Q. Niu, X.L. Qi, S.C. Zhang, X.C. Ma, Q.K. Xue, Nat. Phys. 6, 584–588 (2010)

    Article  Google Scholar 

  26. Y. Yan, Z.M. Liao, F. Yu, H.C. Wu, G. Jing, Z.C. Yang, Q. Zhao, D. Yu, Nanotechnology 23, 305704 (2012)

    Article  Google Scholar 

  27. A.P. Torane, C.D. Lokhande, P.S. Patil, C.H. Bhosale, Mater. Chem. Phys. 55, 51–54 (1998)

    Article  CAS  Google Scholar 

  28. N.D. Desai, V.B. Ghanwat, K.V. Khot, S.S. Mali, C.K. Hong, P.N. Bhosale, J. Mater. Sci. 27, 2385–2393 (2016)

    CAS  Google Scholar 

  29. M. Ramezani, A. Sobhani-Nasab, A. Davoodi, J. Mater. Sci. 26, 5440–5445 (2015)

    CAS  Google Scholar 

  30. M. Liu, P.D. Spanos, S.H. Yu, Nano Energy 64, 103877 (2019)

    Article  CAS  Google Scholar 

  31. S. Majumder, P.K. Baviskar, B.R. Sankapal, Ceram. Int. 42, 6682–6691 (2016)

    Article  CAS  Google Scholar 

  32. G.B. Williamson, R.C. Smallman, Dislocation densities in some annealed and cold-worked metals from measurements on the X-ray debye-scherrer spectrum. Philos. Mag. 1, 33–46 (1956)

    Article  Google Scholar 

  33. S.V. Kite, D.J. Sathe, S.S. Patil, P.N. Bhosale, K.M. Garadkar, Mater. Res. Express 6, 026411 (2019)

    Article  Google Scholar 

  34. S. Majumder, P.K. Baviskar, B.R. Sankapal, Electrochim. Acta 222, 100–107 (2016)

    Article  CAS  Google Scholar 

  35. V.P. Bhalekar, P.K. Baviskar, B. Prasad, N.I. Beedri, V.S. Kadam, H.M. Pathan, Chem. Phys. Lett. 689, 15–18 (2017)

    Article  CAS  Google Scholar 

  36. F.M.A. Almuntaser, P.K. Baviskar, S. Majumder, H.S. Tarkasa, J.V. Sali, B.R. Sankapal, Mater. Sci. Eng. B 244, 23–28 (2019)

    Article  CAS  Google Scholar 

  37. M.A. Tumelero, R. Faccio, A.A. Pasa, J. Phys. Chem. C 120, 1390–1399 (2016)

    Article  CAS  Google Scholar 

  38. J.B. Sambur, T. Novet, B.A. Parkinson, Science 330, 63–66 (2010)

    Article  CAS  Google Scholar 

  39. J.C. Calva-Yanez, O. Perez-Valdovinos, E.A. Reynoso-Soto, G. Alvarado-Tenorio, O.A. Jaramillo-Quintero, M. Rincon, J. Phys. D 52, 125502 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

VSB is sincerely thankful to HRT, SRT, and RAW for supporting during work; Prof. J V Sali, Dr. S S Ghosh, Dr. P G Chavan, Dr. S. R. Gosavi, and Dr. A V Deore for support and lab facility; and UICT, KBCNMU, Jalgaon, for characterization facility. DBS is thankful to KBCNMU, Jalgaon, for research project [NMU/11A/VCRMS/Budget-2016-17/Science/18/85/2017]. PKB is thankful to the Department of Science and Technology, Govt. of India, New Delhi, for financial assistance under the DST-FIST scheme (SR/FST/College-258/2015) and the DBT-STAR college scheme.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Prashant K. Baviskar or Rajendra S. Patil.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baviskar, V.S., Salunkhe, D.B., Patil, G.P. et al. Effect of deposition time on photoelectrochemical performance of chemically grown Bi2Se3-sensitized TiO2 nanostructure solar cells. J Mater Sci: Mater Electron 31, 17440–17450 (2020). https://doi.org/10.1007/s10854-020-04300-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04300-y

Navigation