Growth of hexagonal shape nanostructured Sb2O3 thin films by spray pyrolysis and their structural, morphological, electrical and optical properties

Abstract

In recent past decades, various oxide’s thin films were synthesized successfully by chemical spray pyrolysis technique (CSPT), but little work has been dedicated to the synthesis of Sb2O3 thin films. In this investigation, we report the synthesis of nanostructured antimony trioxide (Sb2O3) thin films using the simple and low-cost CSPT. The deposited films were characterized in detailed by means of x-ray diffraction (XRD), field emission scanning electron microscope (FESEM) and energy dispersive x-ray analysis (EDAX), UV–Visible absorption and transmission spectroscopy, Raman spectroscopy. The electrical resistivity was measured using two-point probe method. The XRD analysis shows that the deposited films possess good crystalline nature, senarmonite cubic phase, with average crystallites size of 58.73 nm. FESEM–EDAX analysis revealed that nano-dimensional hexagonal cubic crystal morphology grown-up on the surface with excellent elemental composition of Sb2O3. The deposited Sb2O3 films exhibit semiconducting behaviour, with the calculated band gap, activation energy and resistivity were found to be the order of 3.43 eV, 0.764 eV and 26.16 × 102 Ω cm respectively. Raman spectra analysis verifies the homogeneity of the deposited material.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    K.O. Ukoba, A.C. Eloka-Eboka, F.L. Inambao, Renew. Sustain. Energy Rev. 82, 2900–2915 (2018)

    CAS  Google Scholar 

  2. 2.

    N. Boukmouche, N. Azzouz, L. Bouchama, A.L. Daltin, J.P. Chopart, Y. Bouznit, Mater. Sci. Semicond. Process. 27, 233–239 (2014)

    CAS  Google Scholar 

  3. 3.

    A.U. Ubale, V.P. Deshpande, J. Alloy. Compd. 500, 138–143 (2010)

    CAS  Google Scholar 

  4. 4.

    S.K. Shinde, S.M. Mohite, A.A. Kadam, H.M. Yadav, G.S. Ghodake, K.Y. Rajpure, D.S. Lee, D.-Y. Kim, J. Electroanal. Chem. 850, 113433 (2019)

    CAS  Google Scholar 

  5. 5.

    A. Juma, I.O. Acik, A.T. Oluwabi, A. Mere, V. Mikli, M. Danilson, M. Krunks, Appl. Surf. Sci. 387, 539–545 (2016)

    CAS  Google Scholar 

  6. 6.

    P. Velusamy, R. Ramesh Babu, K. Ramamurthi, E. Elangovan, J. Viegas, J. Alloy. Compd. 708, 804–812 (2017)

    CAS  Google Scholar 

  7. 7.

    S. Parthiban, E. Elangovan, K. Ramamurthi, R. Martins, E. Fortunato, Sol. Energy Mater. Sol. Cells 94, 406–412 (2010)

    CAS  Google Scholar 

  8. 8.

    L.M. Bertus, C. Faure, A. Danine, C. Labrugere, G. Campet, A. Rougier, A. Duta, Mater. Chem. Phys. 140, 49–59 (2013)

    CAS  Google Scholar 

  9. 9.

    A.A. Yadav, S.C. Pawar, D.H. Patil, M.D. Ghogare, J. Alloy. Compd. 652, 145–152 (2015)

    CAS  Google Scholar 

  10. 10.

    B.B. Patil, S.H. Pawar, J. Alloy. Compd. 509, 414–420 (2011)

    CAS  Google Scholar 

  11. 11.

    M. Adelifard, H. Eshghi, M.M.B. Mohagheghi, Appl. Surf. Sci. 258, 5733–5738 (2012)

    CAS  Google Scholar 

  12. 12.

    S.G. Ibrahim, A.U. Ubale, J. Mol. Struct. 1076, 291–298 (2014)

    CAS  Google Scholar 

  13. 13.

    A.U. Ubale, Y.S. Sakhare, Vacuum 99, 124–126 (2014)

    CAS  Google Scholar 

  14. 14.

    V.G. Rajeshmon, N. Poornima, C. Sudha Kartha, K.P. Vijayakumar, J. Alloy. Compd. 553, 239–244 (2013)

    CAS  Google Scholar 

  15. 15.

    N. Tigau, S. Condurache-Bota, R. Drasovean, J. Cringanu, R. Gavrila, Rom. J. Phys. 62, 1–10 (2017)

    Google Scholar 

  16. 16.

    N. Tigau, V. Ciupina, G. Prodan, J. Cryst. Growth 277, 529–535 (2005)

    CAS  Google Scholar 

  17. 17.

    K.H. Abass, N.H. Obaid, J. Phys. Conf. Ser. 1294, 022005 (2019)

    CAS  Google Scholar 

  18. 18.

    M. Yasir, M. Kuzmin, M.P.J. Punkkinen, J. Mäkelä, M. Tuominen, J. Dahl, P. Laukkanen, K. Kokko, Appl. Surf. Sci. 349, 259–263 (2015)

    CAS  Google Scholar 

  19. 19.

    R.A. Goacalas, M.R. Baldan, E.G. Ciapina, O.M. Berengue, Appl. Surf. Sci. 491, 9–15 (2019)

    Google Scholar 

  20. 20.

    K.K. Nanda, S.N. Sahu, S.N. Behera, Phys. Rev. A 66, 013208 (2002)

    Google Scholar 

  21. 21.

    H. Haberland, Z. Insepov, M. Moseler, Phys. Rev. B 51, 11061 (1995)

    CAS  Google Scholar 

  22. 22.

    G. Fuchs, P. Melinon, F. Santos Aires et al., Phys. Rev. B 44, 3926 (1991)

    CAS  Google Scholar 

  23. 23.

    Y. Qi, J. Zhang, Compos. Part B 162, 112–121 (2019)

    CAS  Google Scholar 

  24. 24.

    L. Niu, J. Xu, W. Yang, J. Zhao, J. Su, Y. Guo, X. Liu, Ferroelectrics 523, 14–21 (2018)

    CAS  Google Scholar 

  25. 25.

    J.L. Xu, Y.G. Lin, W.L. Yang, L. Niu, C.H. Kang, IOP Conf. Ser. Mater. Sci. Eng. 576, 012030 (2019)

    CAS  Google Scholar 

  26. 26.

    M. Deng, S. Li, W. Hong, Y. Jiang, W. Xu, H. Shuai, G. Zou, Y. Hu, H. Hou, W. Wang, X. Ji, Mater. Chem. Phys. 223, 46–52 (2019)

    CAS  Google Scholar 

  27. 27.

    Y. Liu, H. Wang, K. Yang, Y. Yang, J. Ma, K. Pan, G. Wang, F. Ren, H. Pang, Appl. Sci. 9, 2677 (2019)

    CAS  Google Scholar 

  28. 28.

    Y. Tan, L. Chen, H. Chen, Q. Hou, X. Chen, Mater. Lett. 212, 103–106 (2018)

    CAS  Google Scholar 

  29. 29.

    X. Li, J. Qu, H. Xie, Q. Song, G. Fu, H. Yin, Electrochim. Acta 332, 135501 (2020)

    CAS  Google Scholar 

  30. 30.

    M. Hu, Y. Jiang, W. Sun, H. Wang, C. Jin, M. Yan, ACS Appl. Mater. Interfaces 6, 19449–55 (2014)

    CAS  Google Scholar 

  31. 31.

    S. Kim, S. Qu, R. Zhang, P.V. Braun, Small 15, 1900258 (2019)

    Google Scholar 

  32. 32.

    Y. Tan, X. Chen, Y. Zhu, L. Chen, J. Cent. South Univ. 26, 1469–1480 (2019)

    CAS  Google Scholar 

  33. 33.

    F. Tudorache, N. Tigau, S. Condurache-Bota, Sens. Actuators A 285, 134–141 (2019)

    CAS  Google Scholar 

  34. 34.

    K.R. Nemade, S.A. Waghuley, Opt. Mater. 36, 712–716 (2014)

    CAS  Google Scholar 

  35. 35.

    M.M. Rehman, M.M. Alam, A.M. Asiri, Nanoscale Adv. 1, 696–705 (2019)

    Google Scholar 

  36. 36.

    C. Song, N. Zhang, J. Lin, X. Guo, X. Liu, Sci. Rep. 7, 41250 (2017)

    CAS  Google Scholar 

  37. 37.

    N. Tigau, V. Ciupina, G. Prodhan, J. Optoelectron. Adv. Mater. 8, 37–42 (2006)

    CAS  Google Scholar 

  38. 38.

    K.V. Divya, P. Thomas, K.E. Abraham, Mater. Sci. Semicond. Process. 82, 82–91 (2018)

    CAS  Google Scholar 

  39. 39.

    K.V. Divya, K.E. Abraham, Appl. Surf. Sci. 493, 1115–1124 (2019)

    Google Scholar 

  40. 40.

    J. Nayak, S.N. Sahu, Mater. Lett. 61, 1388–1391 (2007)

    CAS  Google Scholar 

  41. 41.

    M.-Z. Xue, Z.W. Fu, Electrochem. Commun. 8, 1250–1256 (2006)

    CAS  Google Scholar 

  42. 42.

    K. Liu, J. Zhai, L. Jiang, Nanotechnology 19, 165604 (2008)

    Google Scholar 

  43. 43.

    Y. Hu, H. Zhang, H. Yang, J. Alloy. Compd. 428, 327–331 (2007)

    CAS  Google Scholar 

  44. 44.

    Y. Wang, L. Jiang, Y. Liu, D. Tang, F. Liu, Y. Lai, J. Alloy. Compd. 727, 469–474 (2017)

    CAS  Google Scholar 

  45. 45.

    R. Binions, C.J. Carmalt, I.P. Parkin, Polyhedron 25, 3032–3038 (2006)

    CAS  Google Scholar 

  46. 46.

    S. Zhu, X. Yang, T. Li, F. Li, W. Cao, J. Alloy. Compd. 721, 149–156 (2017)

    CAS  Google Scholar 

  47. 47.

    M.H. Lakhdar, Y.B. Smida, M. Amlouk, J. Alloy. Compd. 681, 197–204 (2016)

    Google Scholar 

  48. 48.

    Y.P. Shinde, P.N. Sonone, A.U. Ubale, J. Alloy. Compd. 831, 154777 (2020)

    CAS  Google Scholar 

  49. 49.

    J. Xu, W. Yang, L. Niu, X. Dan, C. Wang, C. Wen, Inorg. Nano-Metal Chem. 47, 697–702 (2017)

    CAS  Google Scholar 

  50. 50.

    A.U. Ubale, V.P. Deshpande, Y.P. Shinde, D.P. Gulwade, Chalcogenide Lett. 7, 101–109 (2010)

    CAS  Google Scholar 

  51. 51.

    N.K. Sahoo, K.V.S.R. Apparao, Appl. Phys. A 63, 195–202 (1996)

    Google Scholar 

  52. 52.

    Z. Deng, F. Tang, D. Chen, X. Meng, L. Cao, B. Zou, J. Phys. Chem. B 110, 18225 (2006)

    CAS  Google Scholar 

  53. 53.

    T. Cebriano, B. Méndez, J. Piqueras, Mater. Chem. Phys. 135, 1096–1103 (2012)

    CAS  Google Scholar 

  54. 54.

    A.L.J. Pereira, L. Gracia, D. Santamaria-Perez, R. Vilaplana, F.J. Manjon, D. Errandonea, M. Nalin, A. Beltran, Phys. Rev. B 85, 174108 (2012)

    Google Scholar 

  55. 55.

    X. Ma, Z. Zhang, X. Li, Y. Du, F. Xu, Y. Qian, J. Solid State Chem. 177, 3824–3829 (2004)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by S. B. Jain Institute of Technology, Management and Research, Nagpur, India (under Research and Development Grant). FESEM–EDAX study was carried out at Sprint Testing Solutions, Mumbai, India.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to P. M. Koinkar or A. U. Ubale.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shinde, Y.P., Sonone, P.N., Kendale, R.K. et al. Growth of hexagonal shape nanostructured Sb2O3 thin films by spray pyrolysis and their structural, morphological, electrical and optical properties. J Mater Sci: Mater Electron 31, 17432–17439 (2020). https://doi.org/10.1007/s10854-020-04299-2

Download citation