Synthesis, growth, optical and third-order nonlinear optical properties of glycine sodium nitrate single crystal for photonic device applications

Abstract

Glycine and its related compounds play a prominent role in the field of nonlinear optical studies and of fibre optical communication. In the present work, glycine sodium nitrate (GSN) crystal was grown using the method of slow evaporation method. The GSN crystal belongs to space group Cc in the monoclinic system. Using the FTIR spectrophotometer, the different functional groups have been qualitatively identified. A UV–Vis–NIR spectroscopy was used to record the optical absorption spectra, and the optical energy bandgap of GSN crystal is reported. The SHG conversion efficiency of GSN is determined by Kurtz and Perry technique. The Z-scan experiment was conducted to analyze GSN crystal for third-order NLO behavior and it is used to calculate the values of the nonlinear absorption coefficient, nonlinear refractive index, and third-order nonlinear susceptibility. Third-generation harmonic studies reveal that GSN is an excellent material useful in the fabrication of NLO devices due to its nonlinear response characteristics. The thermal stability of the grown crystal was determined through TG/DTA examination. Also photoconductivity studies confirm the negative photoconductive behavior of GSN and I–V characteristics measurement that have been carried out. The dielectric loss is significantly low and this supports defect-free growth of the crystal. These properties of GSN make it a good candidate in the fabrication of NLO devices.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    J.L. Bredas, C. Adant, P. Tackx, A. Persoons, B.M. Pierce, 3rd-Order nonlinear-optical response in organic materials—theoretical and experimental aspects. Chem. Rev. 94, 243–278 (1994)

    CAS  Article  Google Scholar 

  2. 2.

    D.S. Chemla, J. Zyss, Nonlinear Optical Properties of Organic Molecules and Crystals, vol. 1 and 2 (Academic Press, New York, 1987)

    Google Scholar 

  3. 3.

    H.S. Nalwa, Advanced Functional Molecules and Polymers: Electronic and Photonic Properties, vol. 3 (CRC Press, Boca Raton, 2001)

    Google Scholar 

  4. 4.

    J.H. Joshi, S. Kalainthan, M.J. Joshi, K.D. Parikh, Crystal growth, spectroscopic, second and third order nonlinear optical spectroscopic studies of l-phenylalanine doped ammonium dihydrogen phosphate single crystals. Arab. J. Chem. 13, 5018–5026 (2020)

    CAS  Article  Google Scholar 

  5. 5.

    P. Rekha, P. Jayaprakash, G. Rajasekar, R. Kanagadurai, G. Vinitha, R. Mohan Kumar, Synthesis, growth, structural and optical properties of a novel organic third order nonlinear optical crystal: piperazinediiumtrichloroacetate. J. Mol. Struct. 1177, 579–593 (2019)

    CAS  Article  Google Scholar 

  6. 6.

    C. Besky Job, R. Shabu, R. Anne, S. Paul Raj, Growth and characterization of glycine sodium nitrate non-linear optical crystal. Rasayan J. Chem. 8, 310–315 (2015)

    Google Scholar 

  7. 7.

    S. Suresh, A. Ramanand, P. Mani, K. Murthyanand, Growth, structural, optical, mechanical and dielectric properties of glycine sodium nitrate (GSN) single crystal. J. Optoelectron. Biomed. Mater. 1, 129–139 (2010)

    Google Scholar 

  8. 8.

    R.V. Krishnakumar, M. Subha Nandhini, S. Natarajan, K. Sivakumar, B. Varghese, Glycine sodium nitrate. Acta Crystallogr. C 57, 1149–1150 (2001)

    CAS  Article  Google Scholar 

  9. 9.

    N. Tyagi, N. Sinha, B. Kumar, Evidence of sustained ferroelectricity in glycine sodium nitrate single crystal. Curr. Appl. Phys. 14, 156–160 (2014)

    Article  Google Scholar 

  10. 10.

    R.S. Krishnan, P.S. Narayanan, Crystallography and Crystal Perfection, vol. 329 (Academic Press, London, 1963)

    Google Scholar 

  11. 11.

    S. Palaniswamy, O.N. Balasundaram, Growth and characterization of glycine sodium nitrate as laser based non-linear optical material. Asian J. Chem. 21, 3459–3462 (2009)

    CAS  Google Scholar 

  12. 12.

    D. Sivavishnu, R. Srineevasan, J. Johnson, Synthesis, growth, optical, band gap energy and mechanical properties of semiorganic nonlinear optical material: 2-aminopyridine potassium dihydrogen orthophosphate lithium chloride (2APKDPL). Mater. Sci. Technol. 1, 205–214 (2018)

    Google Scholar 

  13. 13.

    D. Sivavishnu, R. Srineevasan, J. Johnson, Optical properties of 2-aminopyridine potassium dihydrogen phosphate cadmium chloride. Emerg. Mater. Res. 8, 1–4 (2019)

    Google Scholar 

  14. 14.

    S.K. Kurtz, T.T. Perry, A powder technique for the evaluation of nonlinear optical materials. J. Appl. Phys. 39, 3798 (1968)

    CAS  Article  Google Scholar 

  15. 15.

    M. Narayan Bhat, S.M. Dharmaprakash, New nonlinear optical material: glycine sodium nitrate. J. Cryst. Growth 235, 511–516 (2002)

    Article  Google Scholar 

  16. 16.

    J.H. Joshi, S. Kalainthan, D.K. Kanchan, M.J. Joshi, K.D. Parikh, Influence of l-serine on microstructural, spectroscopic, electrical and nonlinear optical performance of ammonium dihydrogen phosphate single crystal. J. Mater. Sci.: Mater. Electron. 30, 14243–14255 (2019)

    CAS  Google Scholar 

  17. 17.

    S.K. Maurya, S. Singhal, D. Goswami, Study of self defocusing in liquids using single beam Z-scan with high repetition rate laser pulses, International Conference on Fibre Optics and Photonics, OSA Technical Digest (online) (Optical Society of America, 2012), paper TPo.44.

  18. 18.

    P. Jayaprakash, P. Sangeetha, C.R.T. Kumari, M.L. Caroline, Investigation on the growth, spectral, lifetime, mechanical analysis and third-order nonlinear optical studies of l-methionine admixtured d-mandelic acid single crystal: a promising material for nonlinear optical applications. Phys. B 518, 1–12 (2017)

    CAS  Article  Google Scholar 

  19. 19.

    J.H. Joshi, S. Kalainthan, D.K. Kanchan, M.J. Joshi, K.D. Parikh, Effect of l-threonine on growth and properties of ammonium dihydrogen phosphate crystal. Arab. J. Chem. 13, 1532–1550 (2020)

    CAS  Article  Google Scholar 

  20. 20.

    K.M. Sureshan, T. Uchimaru, Y. Yao, Y. Watanabe, Strength from weakness: CH…π stabilized conformational tuning of benzyl ethers and a consequent co-operative edge-to-face CH…π network. Cryst. Eng. Commun. 10, 493–496 (2008)

    CAS  Article  Google Scholar 

  21. 21.

    P. Jayaprakash, P. Sangeetha, M. Peer Mohamed, G. Vinitha, S. Muthu, M. Prakash, M.L. Caroline, Growth and characterization of dl-Mandelic acid (C6H5CH (OH) CO2H) single crystal for third-order nonlinear optical applications. J. Mol. Struct. 1148, 314–321 (2017)

    CAS  Article  Google Scholar 

  22. 22.

    K. Mohanraj, D. Balasubramanian, J. Chandrasekaran, Synthesis and characterization of ruthenium-doped CdO nanoparticle and its n-RuCdO/p-Si junctiondiodeapplication. J. Alloys Compd. 779, 762–775 (2019)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The Corresponding author sincerely thank to University Grant Commission (UGC), New Delhi, for funding research project (Ref No: F.NO:4-4/2015-16 (MRP/UGC-SERO).

Author information

Affiliations

Authors

Corresponding author

Correspondence to R. Ravisankar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ravisankar, R., Jayaprakash, P., Eswaran, P. et al. Synthesis, growth, optical and third-order nonlinear optical properties of glycine sodium nitrate single crystal for photonic device applications. J Mater Sci: Mater Electron 31, 17320–17331 (2020). https://doi.org/10.1007/s10854-020-04288-5

Download citation