Skip to main content
Log in

Effects of Cr/Ti co-doping on the electrical and thermal properties of tantalum-based electrolyte materials for solid oxide fuel cells

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

New triclinic oxide material Ta1−xyTixCryO2.5−δ (x = 0.077, y = 0–0.053) was synthesized via an oxalate co-precipitation method and tested as a novel electrolyte for intermediate-temperature solid oxide fuel cells (IT-SOFCs). Structural, electrical, and thermal properties of tantalum-based electrolyte co-doping with Cr3+/Ti4+ content were studied. X-ray powder diffraction showed that the crystal structure changed from orthorhombic to triclinic due to co-doped, and its high-temperature triclinic (pseudo-tetragonal) phase of tantalum pentoxide (H-Ta2O5) structure was stabilized to room temperature by doping. The crystalline phase facilitates the generation of more oxygen vacancies, which increases the electrical conductivity. The appearance of oxygen vacancies in the crystal with triclinic structure was confirmed with Raman spectroscopy and X-ray photoelectron spectroscopy. Scanning electron microscopy results exhibited the grain size decreases gradually with doping. Impedance curves showed high total ionic conductivity (1.48 × 10–1 S/cm at 700 °C) and low activation energy (Ea = 0.857 eV) for Ta0.9Ti0.067Cr0.033O2.5−δ. Thermal expansion coefficients (3.09 × 10–6 K−1) for co-doped samples were much lower in comparison to other electrolytes. Based on the results reported in this work, Ta1−xyTixCryO2.5−δ can be an excellent oxygen conductor and recommended as solid electrolytes for IT-SOFC applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A. Lashtabeg, S.J. Skinner, Solid oxide fuel cells—a challenge for materials chemists? J. Mater. Chem. 16(31), 3161–3170 (2006)

    CAS  Google Scholar 

  2. T. Yang, H. Zhao, M. Fang, K. Swierczek, J. Wang, Z. Du, A new family of Cu-doped lanthanum silicate apatites as electrolyte materials for SOFCs: synthesis, structural and electrical properties. J. Eur. Ceram. Soc. 39, 424–431 (2018)

    Google Scholar 

  3. C. Madhusudan, K. Venkataramana et al., Structural, electrical and thermal studies on microwave sintered Dy and Pr co-doped ceria ceramics as electrolytes for intermediate temperature solid oxide fuel cells. J. Mater. Sci.: Mater. Electron. 29(19), 17067–17077 (2018)

    CAS  Google Scholar 

  4. M.A. Borik, S.I. Bredikhin, V.T. Bublik et al., The impact of structural changes in ZrO2-Y2O3 solid solution crystals grown by directional crystallization of the melt on their transport characteristics. Mater. Lett. 205, 186–189 (2017)

    CAS  Google Scholar 

  5. E.D. Wachsman, K.T. Lee, Lowering the temperature of solid oxide fuel cells. Science 334, 935–939 (2011)

    CAS  Google Scholar 

  6. P. Satardekar, D. Montinaro, V.M. Sglavo, Fe-doped YSZ electrolyte for the fabrication of metal supported-SOFC by co-sintering. Ceram. Int. 41(8), 9806–9812 (2015)

    CAS  Google Scholar 

  7. X. Wang, T. Liu, C. Wang et al., Crystalline structure, microstructure and electrical characterizations of FeO1.5 doped YSZ. Ceram. Intl. 43(12), 9577–9581 (2017)

    CAS  Google Scholar 

  8. Q. Zhou, W.C.J. Wei, Y. Guo et al., LaSrMnCoO5+δ as cathode for intermediate-temperature solid oxide fuel cells. Electrochem. Commun. 19, 36–38 (2012)

    Google Scholar 

  9. Y. Chen, J. Xu, S. Xie et al., Ion doping effects on the lattice distortion and interlayer mismatch of aurivillius-type bismuth titanate compounds. Materials 11(5), 821 (2018)

    Google Scholar 

  10. H. Zhang, L. Zhao et al., Oxygen diffusion and electrochemical performance of La0.6−xSr0.4BaxCo1yFeyO3−δ. J. Mater. Sci. 30(22), 20050–20057 (2019)

    CAS  Google Scholar 

  11. R.K. Raghvendra, P. Singh, Electrical conductivity of barium substituted LSGM electrolyte materials for IT-SOFC. Solid State Ionics 262, 428–432 (2014)

    CAS  Google Scholar 

  12. P. Gao, A. Bolon, M. Taneja et al., Thermal expansion and elastic moduli of electrolyte materials for high and intermediate temperature solid oxide fuel cell. Solid State Ionics 300, 1–9 (2017)

    CAS  Google Scholar 

  13. Z. Song, L. Yi, C. Li et al., Synthesis & characterization of Ti and Fe co-doped Ta2O5 based solid electrolytes for SOFC. Solid State Ionics 312, 106–111 (2017)

    CAS  Google Scholar 

  14. S. Xia, J. Ni, S.V. Savilov, L. Li, Oxygen-deficient Ta2O5 nanoporous films as self-supported electrodes for lithium microbatteries. Nano Energy. 45, 407–412 (2018)

    CAS  Google Scholar 

  15. X. Yu, W. Li, J. Huang, Z. Li, J. Liu, P. Hu, Superstructure Ta2O5 mesocrystals derived from (NH4)2Ta2O3F6 mesocrystals with efficient photocatalytic activity. Dalton Trans. 47(6), 1948–1957 (2018)

    CAS  Google Scholar 

  16. P.S. Dobal, R.S. Katiyar, Y. Jiang, R. Guo, A.S. Bhalla, Micro-Raman scattering and X-ray diffraction studies of (Ta2O5)1–x(TiO2)x ceramics. J. Appl. Phys. 87(12), 8688–8694 (2000)

    CAS  Google Scholar 

  17. Y.-L. Chueh, L.-J. Chou, Z.L. Wang, SiO2/Ta2O5 core-shell nanowires and nanotubes. Angew. Chem. 118(46), 7937–7942 (2006)

    Google Scholar 

  18. Q. Shi, T. Li et al., Synthesis and ionic conductivities of M (Mg, Ba, Zr) and Al co-doped apatite-type lanthanum germanate electrolytes for IT-SOFC. J. Mater. Sci. 29(4), 2725–2732 (2018)

    CAS  Google Scholar 

  19. M. Jayaratna, M. Yoshimura et al., Electrical conductivity of Cr2O3-doped Y2O3-stabilized ZrO2. J. Mater. Sci. 22, 2011–2016 (1987)

    CAS  Google Scholar 

  20. K. Amarsingh Bhabu, J. Theerthagiri et al., Cubic fluorite phase of samarium doped cerium oxide (CeO2)0.96Sm0.04 for solid oxide fuel cell electrolyte. J. Mater. Sci. 272, 1566–1573 (2016)

    Google Scholar 

  21. U. Holzwarth, N. Gibson, The Scherrer equation versus the 'Debye-Scherrer equation'. Nat. Nanotechnol. 6(9), 534 (2011)

    CAS  Google Scholar 

  22. U.N. Gries, H. Schraknepper, K. Skaja, F. Gunkel, S. Hoffmann-Eifert, R. Waser, R.A. De Souza, A SIMS study of cation and anion diffusion in tantalum oxide. Phys. Chem. Chem. Phys. 20(2), 989–996 (2018)

    CAS  Google Scholar 

  23. C. Zhao, R. Liu, S. Wang et al., Fabrication of a large area cathode-supported thin electrolyte film for solid oxide fuel cells via tape casting and co-sintering techniques. Electrochem. Commun. 11(4), 842–845 (2009)

    CAS  Google Scholar 

  24. T.K. Pietrzak, L. Wewior, J.E. Garbarczyk, M. Wasiucionek, I. Gorzkowska, J.L. Nowinski, S. Gierlotka, Electrical properties and thermal stability of FePO4 glasses and nanomaterials. Solid State Ionics 188(1), 99–103 (2011)

    CAS  Google Scholar 

  25. E.E. Nikishina, E.N. Lebedeva, D.V. Drobot, Niobium- and tantalum-containing oxide materials: synthesis, properties, and application. Inorg. Mater. 48(13), 1243–1260 (2012)

    CAS  Google Scholar 

  26. I.E. Grey, W.G. Mumme, R.S. Roth, The crystal chemistry of L-Ta2O5 and related structures. J. Solid State Chem. 178(11), 3308–3314 (2005)

    CAS  Google Scholar 

  27. X.Q. Liu, X.D. Han, Z. Zhang et al., The crystal structure of high temperature phase Ta2O5. Acta Mater. 55(7), 2385–2396 (2007)

    CAS  Google Scholar 

  28. P. Wynblatt, G.S. Rohrer, F. Papillon, Grain boundary segregation in oxide ceramics. J. Eur. Ceram. Soc. 23(15), 2841–2848 (2003)

    CAS  Google Scholar 

  29. S. Hui, J. Roller, S. Yick et al., A brief review of the ionic conductivity enhancement for selected oxide electrolytes. J. Power Sources 172(2), 493–502 (2007)

    CAS  Google Scholar 

  30. B.H. Smith, W.C. Holler, M.D. Gross, Electrical properties and redox stability of tantalum-doped strontium titanate for SOFC anodes. Solid State Ionics 192(1), 383–386 (2011)

    CAS  Google Scholar 

  31. Y. Chen, Z. Pen, Q. Wang et al., Crystalline structure, ferroelectric properties, and electrical conduction characteristics of W/Cr co-doped Bi4Ti3O12 ceramics. J. Alloy Compd. 612, 120–125 (2014)

    CAS  Google Scholar 

  32. R. Bredesen, P. Kofstad, A reinterpretation of the defect structure of L-Ta2O5. Solid State Ionics 27, 11–18 (1988)

    CAS  Google Scholar 

  33. U. Balachandran, N.G. Eror, Electrical conductivity in Ta2O5. Mater. Res. Bull. 17, 151–160 (1982)

    CAS  Google Scholar 

  34. A.E. Mchale, H.L. Tuller, Defects and charge transport in stabilized α-Ta2O5. Radiat. Effects. 75(1–4), 267–281 (1983)

    CAS  Google Scholar 

  35. A.E. McHale, H.L. Tuller, New tantala-based solid oxide electrolytes. Solid State Ionics 5, 515–518 (1981)

    CAS  Google Scholar 

  36. K.C. Anjaneyaa, J. Manjanna et al., Citrate-complexation synthesized Ce0.85Gd0.15O2−δ (GDC15) as solid electrolyte for intermediate temperature SOFC. Phys. B 447, 51–55 (2014)

    Google Scholar 

  37. X. Wang, T. Liu, C. Wang et al., Crystalline structure, microstructure and electrical characterizations of FeO1.5 doped YSZ. Ceram. Int. 43(12), 9577–9581 (2017)

    CAS  Google Scholar 

  38. H. Yoshida et al., Investigation of the relationship between the ionic conductivity and the local structures of singly and doubly doped ceria compounds using EXAFS measurement. Solid State Ionics 140(3–4), 191–199 (2001)

    CAS  Google Scholar 

  39. N.C. Stephenson, R.S. Roth, The crystal structure of the high temperature form of Ta2O5. J. Solid State Chem. 3, 145–153 (1971)

    CAS  Google Scholar 

  40. H. Inaba, Ceria-based solid electrolytes. Solid State Ionics 83(1–2), 1–16 (1996)

    CAS  Google Scholar 

  41. Y.W.C. Peng, K. Jiang et al., Study on the structure change and oxygen vacation shift for Ce1-xSmxO2δ solid solution. J. Alloy Compd. 349, 273–278 (2003)

    CAS  Google Scholar 

  42. S.K. Tadokoro, E.N.S. Muccillo, Effect of Y and Dy co-doping on electrical conductivity of ceria ceramics. J. Eur. Ceram. Soc. 27(13–15), 4261–4264 (2007)

    CAS  Google Scholar 

  43. Y. Wang, Y.J. Jiang, Composition dependence and dielectric properties of (Ta2O5)1–x(TiO2)x polycrystalline ceramics. Mater. Sci. Eng. B 99(1–3), 221–225 (2003)

    Google Scholar 

  44. T. Damart, E. Coillet, A. Tanguy et al., Numerical study of the structural and vibrational properties of amorphous Ta2O5 and TiO2-doped Ta2O5. J. Appl. Phys. 119(17), 175106 (2016)

    Google Scholar 

  45. S. Tiwari, N. Khatun, N. Patra et al., Role of oxygen vacancies in Co/Ni substituted CeO2: a comparative study. Ceram. Int. 45(3), 3823–3832 (2019)

    CAS  Google Scholar 

  46. K. Venkataramana, C. Madhuri, C. Madhusudan et al., Investigation on La3+ and Dy3+ co-doped ceria ceramics with an optimized average atomic number of dopants for electrolytes in IT-SOFCs. Ceram. Int. 44(6), 6300–6310 (2018)

    CAS  Google Scholar 

  47. N. Kemnade, C.J. Shearer et al., Non-destructive functionalisation for atomic layer deposition of metal oxides on carbon nanotubes: effect of linking agents and defects. Nanoscale 7(7), 3028–3034 (2015)

    CAS  Google Scholar 

  48. X. Lu, Y. Zeng et al., Oxygen-deficient hematite nanorods as high-performance and novel negative electrodes for flexible asymmetric supercapacitors. Adv. Mater. 26(19), 3148–3155 (2014)

    CAS  Google Scholar 

  49. Yu Xin, W. Li, Z. Li et al., Defect engineered Ta2O5 nanorod: one-pot synthesis, visible-light driven hydrogen generation and mechanism. Appl. Catal. B 217, 48–56 (2017)

    Google Scholar 

  50. Y. Cheng, Y. Mao, B. Yuan et al., Enhanced negative thermal expansion and optical absorption of In0.6(HfMg)0.7Mo3O12 with oxygen vacancies. Phys. Lett. A. 381(27), 2195–2199 (2017)

    CAS  Google Scholar 

  51. D. Kuscer, I. Bantan, M. Hrovat et al., The microstructure, coefficient of thermal expansion and flexural strength of cordierite ceramics prepared from alumina with different particle sizes. J. Eur. Ceram. Soc. 37(2), 739–746 (2017)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of Hainan Provincial Natural Science Foundation of China (519MS022), the Key Scientific & Technological Project of Hainan Province (ZDKJ2017011), Special funds for guiding local scientific and technological development by China government (ZY2019HN0904), National Key Research and Development Program of China (2016YFC0700804), and Natural Science Foundation of China (51562008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changjiu Li.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, S., Zhang, J., Yang, S. et al. Effects of Cr/Ti co-doping on the electrical and thermal properties of tantalum-based electrolyte materials for solid oxide fuel cells. J Mater Sci: Mater Electron 31, 17307–17319 (2020). https://doi.org/10.1007/s10854-020-04286-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04286-7

Navigation