Skip to main content
Log in

Combination of pumpkin-derived biochar with nickel ferrite/FeNi3 toward low frequency electromagnetic absorption

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The rapid development of electromagnetic communication and electronic technique has brought serious problems of EMI and electromagnetic radiation. Herein, a combined method of ball milling, hydrothermal and multiple calcination processes was utilized to synthesize pumpkin-derived biochar/nickel ferrite/FeNi3 composite. The nickel ferrite and FeNi3 nanoparticles are distributed uniformly on the surface of biochar, and the thin carbon layer formed on the surface of NPs endows a better impedance matching to the particles. The excellent low frequency absorption performance can be achieved via the cooperative effect of dielectric and magnetic wastage mechanisms i.e., low frequency natural resonance, abundant interface polarization, dipolar polarization, conductive loss, multi-reflection and scatter etc. The maximum RL value achieves − 59.29 dB at 1.30 GHz with the effective absorption bandwidth of 1.34 GHz (0.76–2.1 GHz), declaring this biochar/nickel ferrite/FeNi3 ternary hybrid could be used as one kind of efficient low frequency electromagnetic absorbent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. D. Lan, M. Qin, R. Yang, S. Chen, H. Wu, Y. Fan, Q. Fu, F. Zhang, Facile synthesis of hierarchical chrysanthemum-like copper cobaltate-copper oxide composites for enhanced microwave absorption performance. J. Colloid Interface Sci. 533, 481–491 (2019)

    Article  CAS  Google Scholar 

  2. M. Qin, D. Lan, J. Liu, H. Liang, L. Zhang, H. Xing, T. Xu, H. Wu, Synthesis of single-component metal oxides with controllable multi-shelled structure and their morphology-related applications. Chem. Rec. 20, 102–119 (2020)

    Article  CAS  Google Scholar 

  3. B. Zhao, X. Guo, W. Zhao, J. Deng, G. Shao, B. Fan, Z. Bai, Zhang. Yolk-shell Ni@SnO2 composites with a designable interspace to improve the electromagnetic wave absorption properties. ACS Appl. Mater. Interfaces 8, 28917–28925 (2016)

    Article  CAS  Google Scholar 

  4. B. Zhao, G. Shao, B. Fan, W. Zhao, Y. Xie, R. Zhang, Synthesis of flower-like CuS hollow microspheres based on nanoflakes self-assemble and their microwave absorption properties. J. Mater. Chem. A 3, 10345–10352 (2015)

    Article  CAS  Google Scholar 

  5. J. Wang, B. Wang, A. Feng, Z. Jia, G. Wu, Design of morphology-controlled and excellent electromagnetic wave absorption performance of sheet-shaped ZnCo2O4 with a special arrangement. J. Alloys Compd. 834, 155092 (2020)

    Article  CAS  Google Scholar 

  6. X. Zhou, Z. Jia, A. Feng, S. Qu, X. Wang, X. Liu, B. Wang, G. Wu, Synthesis of porous carbon embedded with NiCo/CoNiO2 hybrids composites for excellent electromagnetic wave absorption performance. J. Colloid Interface Sci. 575, 130–139 (2020)

    Article  CAS  Google Scholar 

  7. R. Che, L.M. Peng, X. Duan, Q. Chen, X. Liang, Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes. Adv. Mater. 16, 401–405 (2004)

    Article  CAS  Google Scholar 

  8. S. Yun, A. Kirakosyan, S. Surabhi, J.R. Jeong, J. Choi, Controlled morphology of MWCNTs driven by polymer-grafted nanoparticles for enhanced microwave absorption. J. Mater. Chem. C 5, 8436–8443 (2017)

    Article  CAS  Google Scholar 

  9. R. Shu, W. Li, X. Zhou, D. Tian, G. Zhang, Y. Gan, J. Shi, J. He, Facile preparation and microwave absorption properties of RGO/MWCNTs/ZnFe2O4 hybrid nanocomposites. J. Alloys Compd. 743, 163–174 (2018)

    Article  CAS  Google Scholar 

  10. Z. Jia, Z. Gao, K. Kou, A. Feng, C. Zhang, B. Xu, G. Wu, Facile synthesis of hierarchical a-site cation deficiency perovskite LaxFeO3–y/RGO for high efficiency microwave absorption. Compos. Commun. 20, 100344 (2020)

    Article  Google Scholar 

  11. Y. Qiao, J. Xiao, Q. Jia, L. Lu, H. Fan, Preparation and microwave absorption properties of ZnFe2O4/polyaniline/graphene oxide composite. Results Phys. 13, 102221 (2019)

    Article  Google Scholar 

  12. R. Shu, G. Zhang, J. Zhang, X. Wang, M. Wang, Y. Gan, J. Shi, J. He, Synthesis and high-performance microwave absorption of reduced graphene oxide/zinc ferrite hybrid nanocomposite. Mater. Lett. 215, 229–232 (2018)

    Article  CAS  Google Scholar 

  13. H. Luo, W. Chen, W. Zhou, L. Long, L. Deng, P. Xiao, Y. Li, Carbon fiber/Si3N4 composites with SiC nanofiber interphase for enhanced microwave absorption properties. Ceram. Int. 43, 12328–12332 (2017)

    Article  CAS  Google Scholar 

  14. T. Zhang, B. Xiao, P. Zhou, L. Xia, G. Wen, H. Zhang, Porous-carbon-nanotube decorated carbon nanofibers with effective microwave absorption properties. Nanotechnology 28, 355708 (2017)

    Article  CAS  Google Scholar 

  15. H. Wang, D. Zhu, X. Wang, F. Luo, Influence of silicon carbide fiber (SiCf) type on the electromagnetic microwave absorbing properties of SiCf/epoxy composites. Composites Part A 93, 10–17 (2017)

    Article  CAS  Google Scholar 

  16. J.A. Marins, B.G. Soares, H.S. Barud, S.J.L. Ribeiro, Flexible magnetic membranes based on bacterial cellulose and its evaluation as electromagnetic interference shielding material. Mater. Sci. Eng. C 33, 3994–4001 (2013)

    Article  CAS  Google Scholar 

  17. P. Lv, W. Xu, D. Li, Q. Feng, Y. Yao, Z. Pang, L.A. Lucia, Q. Wei, Metal-based bacterial cellulose of sandwich nanomaterials for anti-oxidation electromagnetic interference shielding. Mater. Des. 122, 374–382 (2016)

    Article  CAS  Google Scholar 

  18. Z. Lou, Y. Zhang, M. Zhou, H. Han, J. Cai, L. Yang, C. Yuan, Y. Li, Synthesis of magnetic wood fiber board and corresponding multi-layer magnetic composite board, with electromagnetic wave absorbing properties. Nanomaterials 8, 441 (2018)

    Article  CAS  Google Scholar 

  19. Z. Wu, K. Tian, T. Huang, W. Hu, F. Xie, J. Wang, M. Su, L. Li, Hierarchically porous carbons derived from biomasses with excellent microwave absorption performance. ACS Appl. Mater. Interfaces 10, 11108–11115 (2018)

    Article  CAS  Google Scholar 

  20. X. Zhou, Z. Jia, A. Feng, X. Wang, J. Liu, M. Zhang, H. Cao, G. Wu, Synthesis of fish skin-derived 3D carbon foams with broadened bandwidth and excellent electromagnetic wave absorption performance. Carbon 152, 827–836 (2019)

    Article  CAS  Google Scholar 

  21. H. Wang, F. Meng, J. Li, T. Li, Z. Chen, H. Luo, Z. Zhou, Carbonized design of hierarchical porous carbon/Fe3O4@Fe derived from loofah sponge to achieve tunable high-performance microwave absorption. ACS Sustain. Chem. Eng. 6, 11801–11810 (2018)

    Article  CAS  Google Scholar 

  22. C. Liang, Z. Wang, Eggplant-derived SiC aerogels with high-performance electromagnetic wave absorption and thermal insulation properties. Chem. Eng. J. 373, 598–605 (2019)

    Article  CAS  Google Scholar 

  23. H. Zhao, Y. Cheng, J. Ma, Y. Zhang, G. Jia, Y. Du, A sustainable route from biomass cotton to construct lightweight and high-performance microwave absorber. Chem. Eng. J. 339, 432–441 (2018)

    Article  CAS  Google Scholar 

  24. J. Li, Y. Xie, W. Lu, T.W. Chou, Flexible electromagnetic wave absorbing composite based on 3D rGO-CNT-Fe3O4 ternary films. Carbon 129, 76–84 (2018)

    Article  CAS  Google Scholar 

  25. J. Liu, R. Che, H. Chen, F. Zhang, F. Xia, Q. Wu, M. Wang, Microwave absorption enhancement of multifunctional composite microspheres with spinel Fe3O4 cores and anatase TiO2 shells. Small 8, 1214–1221 (2012)

    Article  CAS  Google Scholar 

  26. P. Yin, L. Zhang, P. Sun, W. Wu, X. Sun, X. Feng, J. Wang, J. Dai, Y. Tang, Novel approach to prepare carbon-encapsulated CIPs@FeO composite for efficient absorption of low-frequency microwave. J. Mater. Sci. Mater. Electron. 31, 11059–11070 (2020)

    Article  CAS  Google Scholar 

  27. P. Liu, Y. Huang, X. Zhang, Cubic NiFe2O4 particles on graphene-polyaniline and their enhanced microwave absorption properties. Compos. Sci. Technol. 107, 54–60 (2015)

    Article  CAS  Google Scholar 

  28. P. Liu, Y. Huang, X. Sun, NiFe2O4 clusters on the surface of reduced graphene oxide and their excellent microwave absorption properties. Mater. Lett. 112, 117–120 (2013)

    Article  CAS  Google Scholar 

  29. X. Zhao, Y.L. Zhang, X.X. Wang, H.L. Shi, W.Z. Wang, M.S. Cao, Enhanced microwave absorption properties of NiFe2O4 nanocrystal deposited reduced graphene oxides. J. Mater. Sci. Mater. Electron. 27, 11518–11523 (2016)

    Article  CAS  Google Scholar 

  30. Y. Wang, W. Zhang, C. Luo, X. Wu, Q. Wang, W. Chen, J. Li, Synthesis, characterization and enhanced electromagnetic properties of NiFe2O4@SiO2-decorated reduced graphene oxide nanosheets. Ceram. Int. 42, 17374–17381 (2016)

    Article  CAS  Google Scholar 

  31. M. Zong, Y. Huang, X. Ding, N. Zhang, C. Qu, Y. Wang, One-step hydrothermal synthesis and microwave electromagnetic properties of RGO/NiFe2O4 composite. Ceram. Int. 40, 6821–6828 (2014)

    Article  CAS  Google Scholar 

  32. H. Hosseini, H. Mahdavi, Nanocomposite based on epoxy and MWCNTs modified with NiFe2O4 nanoparticles as efficient microwave absorbing material. Appl. Organomet. Chem. 32, e4294 (2018)

    Article  CAS  Google Scholar 

  33. X. Ding, Y. Huang, J. Wang, Synthesis of FeNi3 nanocrystals encapsulated in carbon nanospheres/reduced graphene oxide as a light weight electromagnetic wave absorbent. RSC Adv. 5, 64878–64885 (2015)

    Article  CAS  Google Scholar 

  34. Y. Sun, X. Liu, C. Feng, J. Fan, Y. Lv, Y. Wang, C. Li, A facile synthesis of FeNi3@C nanowires for electromagnetic wave absorber. J. Alloys Compd. 586, 688–692 (2014)

    Article  CAS  Google Scholar 

  35. S.J. Yan, C.Y. Xu, J.T. Jiang, D.B. Liu, Z.Y. Wang, J. Tang, L. Zhen, Strong dual-frequency electromagnetic absorption in Ku-band of C@FeNi3 core/shell structured microchains with negative permeability. J. Magn. Magn. Mater. 349, 159–164 (2014)

    Article  CAS  Google Scholar 

  36. C. Han, H. Zhang, D. Zhang, Y. Deng, J. Shen, G. Zeng, Ultrafine FeNi3 nanocrystals embedded in 3D honeycomb-like carbon matrix for high-performance microwave absorption. Nanomaterials 10, 598 (2020)

    Article  CAS  Google Scholar 

  37. H. Luo, R. Gong, X. Wang, K. Song, C. Zhu, L. Wang, Synthesis and excellent microwave absorption properties of reduced graphene oxide/FeNi3/Fe3O4 composite. New J. Chem. 40, 6238–6243 (2016)

    Article  CAS  Google Scholar 

  38. W.B. Weir, Automatic measurement of complex dielectric constant and permeability at microwave frequencies. Proc. IEEE 62, 33–36 (1974)

    Article  Google Scholar 

  39. A.M. Nicolson, G.F. Ross, Measurement of the intrinsic properties of materials by time-domain techniques. IEEE Trans. Instrum. Meas. 19, 377–382 (1970)

    Article  Google Scholar 

  40. Z. Gao, B. Xu, M. Ma, A. Feng, Y. Zhang, X. Liu, Z. Jia, G. Wu, Electrostatic self-assembly synthesis of ZnFe2O4 quantum dots (ZnFe2O4@C) and electromagnetic microwave absorption. Composites Part B 179, 107417 (2019)

    Article  CAS  Google Scholar 

  41. B. Zhao, W. Zhao, G. Shao, B. Fan, R. Zhang, Morphology-control synthesis of a core-shell structured NiCu alloy with tunable electromagnetic-wave absorption capabilities. ACS Appl. Mater. Int. 7, 12951–12960 (2015)

    Article  CAS  Google Scholar 

  42. H. Wu, J. Liu, H. Liang, D. Zhang, Sandwich-like Fe3O4/Fe3S4 composites for electromagnetic wave absorption. Chem. Eng. J. 393, 124753 (2020)

    Article  CAS  Google Scholar 

  43. C.H. An, G. Liu, L. Li, Y. Wang, C.C. Chen, Y.J. Wang, L.F. Jiao, H.T. Yuan, In situ synthesized one-dimensional porous Ni@C nanorods as catalysts for hydrogen storage properties of MgH2. Nanoscale 6, 3223–3230 (2014)

    Article  CAS  Google Scholar 

  44. Y. Yuan, Y. Ding, C. Wang, F. Xu, Z. Lin, Y. Qin, Y. Li, M. Yang, X. He, Q. Peng, Multifunctional stiff carbon foam derived from bread. ACS Appl. Mater. Interfaces 8, 16852–16861 (2016)

    Article  CAS  Google Scholar 

  45. C.Z. Guo, W.L. Liao, Z.B. Li, C.G. Chen, Exploration of the catalytically active site structures of animal biomass-modified on cheap carbon nanospheres for oxygen reduction reaction with high activity, stability and methanol-tolerant performance in alkaline medium. Carbon 85, 279–288 (2015)

    Article  CAS  Google Scholar 

  46. X. Zeng, X. Cheng, R. Yu, G.D. Stucky, Electromagnetic microwave absorption theory and recent achievements in microwave absorbers. Carbon (2020). https://doi.org/10.1016/j.carbon.2020.07.028

    Article  Google Scholar 

  47. H. Wu, G. Wu, Y. Ren, L. Yang, L. Wang, X. Li, Co2+/Co3+ ratio dependence of electromagnetic wave absorption in hierarchical NiCo2O4-CoNiO2 hybrids. J Mater. Chem. C 3, 7677–7690 (2015)

    Article  CAS  Google Scholar 

  48. A. Kozioł-Rachwał, W. Janus, M. Szpytma, P. Dróżdż, M. Ślęzak, K. Matlak, M. Gajewska, T. Ślęzak, J. Korecki, Interface engineering towards enhanced exchange interaction between Fe and FeO in Fe/MgO/FeO epitaxial heterostructures. Appl. Phys. Lett. 115, 141603 (2019)

    Article  CAS  Google Scholar 

  49. D. Lan, M. Qin, R. Yang, H. Wu, Z. Jia, K. Kou, G. Wu, Y. Fan, Q. Fu, F. Zhang, Synthesis, characterization and microwave transparent properties of Mn3O4 microspheres. J. Mater. Sci. Mater. Electron. 30, 8771–8776 (2019)

    Article  CAS  Google Scholar 

  50. X.F. Liu, X.R. Cui, Y.X. Chen, X.J. Zhang, R.H. Yu, G.S. Wang, H. Ma, Modulation of electromagnetic wave absorption by carbon shell thickness in carbon encapsulated magnetite nanospindles-poly (vinylidene fluoride) composites. Carbon 95, 870–878 (2015)

    Article  CAS  Google Scholar 

  51. B. Zhao, X.Q. Guo, W.Y. Zhao, J.H. Deng, B.B. Fan, G. Shao, Z.Y. Bai, R. Zhang, Facile synthesis of yolk-shell Ni@void@SnO2(Ni3Sn2) ternary composites via galvanic replacement/Kirkendall effect and their enhanced microwave absorption properties. Nano Res. 10(1), 331–343 (2017)

    Article  CAS  Google Scholar 

  52. H. Wu, G. Wu, L. Wang, Peculiar porous α-Fe2O3, γ-Fe2O3 and Fe3O4 nanospheres: facile synthesis and electromagnetic properties. Powder Technol. 269, 443–451 (2015)

    Article  CAS  Google Scholar 

  53. H. Lv, G. Ji, W. Liu, H. Zhang, Y. Du, Achieving hierarchical hollow carbon@Fe@Fe3O4 nanospheres with superior microwave absorption properties and lightweight features. J. Mater. Chem. C 3, 10232–10241 (2015)

    Article  CAS  Google Scholar 

  54. Q. Long, Z. Xu, H. Xiao, K. Xie, A facile synthesis of a cobalt nanoparticle-graphene nanocomposite with high-performance and triple-band electromagnetic wave absorption properties. RSC Adv. 8, 1210–1217 (2018)

    Article  CAS  Google Scholar 

  55. J. Fang, T. Liu, Z. Chen, Y. Wang, W. Wei, X. Yue, Z. Jiang, A wormhole-like porous carbon/magnetic particles composite as an efficient broadband electromagnetic wave absorber. Nanoscale 8, 8899–8909 (2016)

    Article  CAS  Google Scholar 

  56. H. Wu, J. Liu, H. Liang, D. Zang, Sandwich-like Fe3O4/Fe3S4 composites for electromagnetic wave absorption. Chem. Eng. J. 393, 124743 (2020)

    Article  CAS  Google Scholar 

  57. Y. Lei, Z. Yao, H. Lin, J. Zhou, A.A. Haidry, P. Liu, The effect of polymerization temperature and reaction time on microwave absorption properties of Co-doped ZnNi ferrite/polyaniline composites. RSC Adv. 8, 29344–29355 (2018)

    Article  CAS  Google Scholar 

  58. M. Qin, L. Zhang, H. Wu, Dual-template hydrothermal synthesis of multi-channel porous NiCo2O4 hollow spheres as high-performance electromagnetic wave absorber. Appl. Surf. Sci. 515, 146132 (2020)

    Article  CAS  Google Scholar 

  59. Z.J. Guan, J.T. Jiang, N. Chen, Y.X. Gong, L. Zhen, Carbon-coated CoFe-CoFe2O4 composite particles with high and dual-band electromagnetic wave absorbing properties. Nanotechnology 29, 305604 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under grant of 51704242, the Natural Science Foundation of Shaanxi Province in China under grant of 2018JM5094, the Special Scientific Research Project of Shaanxi Provincial Department of Education under grant of 19JK014, the Shaanxi Natural Science Research Program under grant of 2020JQ-915, the Innovation Training Program of Sichuan Agricultural University under grant of 202010626006, the Research Interest Training Program of Sichuan Agricultural University under grant of 2020492 and the Two-Way Support Program of Sichuan Agricultural University under grant of 2021993073.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pengfei Yin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, P., Zhang, L., Wang, Y. et al. Combination of pumpkin-derived biochar with nickel ferrite/FeNi3 toward low frequency electromagnetic absorption. J Mater Sci: Mater Electron 32, 25698–25710 (2021). https://doi.org/10.1007/s10854-020-04285-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04285-8

Navigation