Study of structural, optical, and paramagnetic properties of Zn1−xCoxS nanoparticles prepared via co-precipitation

Abstract

Co-doped ZnS (Zn1−xCoxS) nanoparticles were successfully synthesized by the chemical co-precipitation method. X-ray diffraction (XRD) patterns showed that nanoparticles were polycrystalline in nature with the cubic crystal structure. A reduction in the lattice parameter for Co-doped ZnS nanoparticles was observed, indicating that Co2+ ions are incorporated into the ZnS matrix. The average crystallite size of prepared nanoparticles calculated using Scherrer’s formula and found to be 2–3 nm. The crystallite size and microstrain of samples were investigated by the W–H analysis method. EDX spectra of doped samples confirmed the presence of the elements Zn, S, and Co. The field emission-scanning electron microscope (FE-SEM) images of nanoparticles are spherical with agglomeration. UV–visible measurements revealed that the optical bandgap of Zn1−xCoxS nanoparticles decreased with increasing cobalt concentration. Magnetic properties showed a paramagnetic-like behavior in all samples prepared at room temperature.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    A.P. Alivisatos, Semiconductor clusters nanocrystals and quantum dots. Science 271, 933–937 (1996)

    CAS  Article  Google Scholar 

  2. 2.

    A. Le Donne, S. Kanti Jana, S. Banerjee, S. Basu, S. Binetti, J. Appl. Phys. 113, 014903 (2013). https://doi.org/10.1063/1.4772668

    CAS  Article  Google Scholar 

  3. 3.

    P.D. Amico, A. Calzolari, A. Ruini, A. Catellani, New energy with ZnS: novel applications for a standard transparent compound. Sci. Rep. 7, 16805 (2017)

    Article  Google Scholar 

  4. 4.

    M. Roushani, M. Shamsipur, H.R. Rajabi, J. Electroanal. Chem. 712, 19 (2014)

    CAS  Article  Google Scholar 

  5. 5.

    B. Hemmateenejad, M. Shamsipur, F. Samari, H.R. Rajabi, J. Iran. Chem. Soc. 12, 1729 (2015)

    CAS  Article  Google Scholar 

  6. 6.

    M. Roushani, M. Mavaei, H.R. Rajabi, J. Mol. Catal. A: Chem. 409, 102 (2015)

    CAS  Article  Google Scholar 

  7. 7.

    A. Reddy, G. Murali, R.P. Vijayalakshmi, B.K. Reddy, Appl. Phys. A 105, 119–124 (2011)

    CAS  Article  Google Scholar 

  8. 8.

    B. Sreenivasulu, S. Venkatramana Reddy, P. Venkateswara Reddy, J. Mater. Sci. (2018). https://doi.org/10.1007/s10854-017-7911-5

    Article  Google Scholar 

  9. 9.

    S. Kar, S. Biswas, J. Phys. Chem. C 112, 11144 (2008)

    CAS  Article  Google Scholar 

  10. 10.

    H.C. Ong, R.P.H. Chang, Appl. Phys. Lett. 79, 3612 (2001)

    CAS  Article  Google Scholar 

  11. 11.

    Y.C. Fang, S.Y. Chu, H.C. Chen, J. Electrochem. Soc. 156, k55 (2009)

    CAS  Article  Google Scholar 

  12. 12.

    S. Ghorai, N. Patra, A. Pal, D. Bhattacharya, S.N. Jha, B. Ray, S. Chatterjee, A.K. Ghosh, J. Alloys Compd. 805, 363–378 (2019)

    CAS  Article  Google Scholar 

  13. 13.

    N.K. Sunil Kumar, Verma. J. Mater. Sci. 25, 1132–1137 (2014)

    Google Scholar 

  14. 14.

    V.D. Mote, Y. Purushotham, B.N. Dole, Cerâmica 59, 614–619 (2013)

    CAS  Article  Google Scholar 

  15. 15.

    Z.L. Wang, Mater Sci Eng R 64, 33–71 (2009)

    Article  Google Scholar 

  16. 16.

    C. Sociv, A. Zhang, B. Xiang, S.A. Dayeh, D.P.R. Aplin, J. Park, Nano Lett. 7, 1003–1009 (2007)

    Article  Google Scholar 

  17. 17.

    K. Manzoor, V. Aditya, S.R. Vadera, N. Kumar, T.R.N. Kutty, Solid State Commun. 135, 16–20 (2005)

    CAS  Article  Google Scholar 

  18. 18.

    D. Saikia, J.P. Borah, Appl. Phys. A 124, 240 (2018)

    Article  Google Scholar 

  19. 19.

    C.S. Pathak, M.K. Mandal, V. Agarwal, Mater. Sci. Semicond. Process. 16, 467–471 (2013)

    CAS  Article  Google Scholar 

  20. 20.

    S. Sambasivam, D.P. Joseph, J.G. Lin, C. Venkateswaran, J. Solid State Chem. 182, 2598–2601 (2009)

    CAS  Article  Google Scholar 

  21. 21.

    S. Kumar, C.L. Chen, C.L. Dong, Y.K. Ho, J.F. Lee, T.S. Chan, R. Thangavel, T.K. Chen, B.H. Mok, S.M. Rao, M.K. Wu, Room J. Alloy. Compd. 554, 357–362 (2013)

    CAS  Article  Google Scholar 

  22. 22.

    N. Eryong, L. Donglai, Z. Yunsen, B. Xue, Y. Liang, J. Yong, J. Zhifeng, S. Xiaosong, Appl. Surf. Sci. 257, 8762–8766 (2011)

    Article  Google Scholar 

  23. 23.

    C.S. Pathak, M.K. Mandal, Optoelectron. Adv. Mater. Rapid Commun. 5(3), 211–214 (2011). https://doi.org/10.1007/s10854-014-2287-2

    CAS  Article  Google Scholar 

  24. 24.

    J.K. Salem, T.M. Hammad, S. Kuhn, M. Abu Draaz, N.K. Hejazy, R. Hempelmann, J. Mater. Sci. 25, 2177–2182 (2014). https://doi.org/10.1007/s10854-014-1856-8

    CAS  Article  Google Scholar 

  25. 25.

    B.R. Kumar, B. Hymavathi, J. Asian Ceram. Soc. 5, 94–103 (2017)

    Article  Google Scholar 

  26. 26.

    E. Isbilir, Z. Serbetci, M. Soylu, Superlattice. Microst. 67, 144–155 (2014)

    CAS  Article  Google Scholar 

  27. 27.

    S. Sambasivam, D. Paul Joseph, J.G. Lin, C. Venkateswaran, J. Solid State Chem 182, 2598 (2009)

    CAS  Article  Google Scholar 

  28. 28.

    J. Dai, Z. Jiang, W. Li, G. Bian, Q. Zhu, Mater. Lett. 55(6), 383–387 (2002)

    CAS  Article  Google Scholar 

  29. 29.

    J.F. Reber, K. Meier, J. Phys. Chem. 88(24), 5903–5913 (1984)

    CAS  Article  Google Scholar 

  30. 30.

    D. Saikia, R.D. Raland, J.P. Borah, Phys. E 83, 56 (2016)

    CAS  Article  Google Scholar 

  31. 31.

    B. Poornaprakash, P.T. Poojitha, U. Chalapathi, S. Ramu, R.P. Vijayalakshmi, S.H. Park, Ceram. Int. 42, 8092 (2016)

    CAS  Article  Google Scholar 

  32. 32.

    M.A. Mahadik, Y.M. Hunge, S.S. Shinde, R.Y. Rajpure, G.H. Bhosale, J. Semi. 36, 033002–33011 (2015)

    Article  Google Scholar 

  33. 33.

    S. Paul, A. Choudhury, Appl. Nanosci. 4, 839–847 (2014)

    CAS  Article  Google Scholar 

  34. 34.

    J. Singh, S. Sharma, S. Soni, S. Sharma, R.C. Singh, Mater. Sci. Semicond. Process. 98, 29–38 (2019)

    CAS  Article  Google Scholar 

  35. 35.

    P.C. Patel, S. Ghosh, P.C. Srivastava, J. Mater. Sci. 50, 7919–7929 (2015)

    CAS  Article  Google Scholar 

  36. 36.

    D. Saikia, J.P. Borah, J Mater Sci. 28, 8029–8037 (2017)

    CAS  Google Scholar 

  37. 37.

    S. Elsi, S. Mohanapriya, K. Pushpanathan, J. Supercond. Novel Magn. (2020). https://doi.org/10.1007/s10948-020-05573-4

    Article  Google Scholar 

  38. 38.

    A. Franco Jr., H.V.S. Pessoni, P.R.T. Ribeiro, F.L.A. Machado, J. Magn. Magn. Mater. 426, 347–350 (2017)

    CAS  Article  Google Scholar 

  39. 39.

    C. Bi, L. Pan, M. Xu, L. Qin, J. Yin, Mater. Chem. Phys. 116, 363–367 (2009)

    CAS  Article  Google Scholar 

  40. 40.

    Wu Meirong, Z. Wei, W. Zhao, X. Wang, J. Jiang, J. Nanomateri. 2017, 1603450 (2017)

    Google Scholar 

  41. 41.

    P. Kaur, S. Kumar, A. Singh, Superlattices Microstruct. 83, 785–795 (2015)

    CAS  Article  Google Scholar 

  42. 42.

    P.K. Sharma, R.K. Dutta, A.C. Pandey, J. Magn. Magn. Mater. 321, 3457–3461 (2009)

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to V. V. Jadhavar or B. S. Munde.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jadhavar, V.V., Mote, V.D. & Munde, B.S. Study of structural, optical, and paramagnetic properties of Zn1−xCoxS nanoparticles prepared via co-precipitation. J Mater Sci: Mater Electron 31, 17297–17306 (2020). https://doi.org/10.1007/s10854-020-04284-9

Download citation