Cu-doped ZnS coatings for optoelectronics with enhanced protection for UV radiations

Abstract

Molecular dopants are of great importance in nano-chemical compounds by improving the function of inorganic electronic devices. In this article, Cu:ZnS (CZS) powders were made using the chemical method. Thin films were deposited by the physical method. The CZS films showed cubic crystal structures with a single hexagonal peak. The impact of an increase in Cu2+ dopants was investigated not only in reducing the grain size but also in reducing the optical energy gap and deviation parameters of the lattice constants. The estimated energy gaps of CZS nanostructures (NSs) were (3.70, 3.66, 3.0, and 3.76 eV) for Cu dopant (0, 1.5, 3.0, and 4.5 at.%); an indication of a blueshift. Redshift was also noticed for Cu dopant 4.5% due to interstitial sites. Moreover, the transmittance for all specimens was (70–95%) in the visible and near IR-region and reduced in the UV range (< 400 nm). The decrease in light transmittance occurred in the UV range when the Cu2+ concentration increased. Besides, the study revealed a reduction in the power loss of the thin film indicating high quality and a highly optimized electrical and electronic system. The Neural Network was utilized to obtain validation of results by the theoretical study.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

References

  1. 1.

    C. Corrado, M. Hawker, G. Livingston, S. Medling, F. Bridgesb, J.Z. Zhang, Nanoscale 2, 1213–1221 (2010)

    CAS  Article  Google Scholar 

  2. 2.

    W.Q. Peng, G.W. Cong, S.C. Qu, Z.G. Wang, Opt. Mater. 29, 313–317 (2006)

    CAS  Article  Google Scholar 

  3. 3.

    A.A. Bol, J. Ferwerda, J.A. Bergwerff, A. Meijerink, J. Lumin. 99, 325–334 (2002)

    CAS  Article  Google Scholar 

  4. 4.

    S. Naghilooa, A. Habibi-Yangjeh, M. Behboudnia, Appl. Surf. Sci. 257, 2361–2366 (2011)

    Article  Google Scholar 

  5. 5.

    Z. Poormohammadi-Ahandani, A. Habibi-Yangjeh, Desalination 271, 273–278 (2011)

    CAS  Article  Google Scholar 

  6. 6.

    E. Monroy, F. Omnes, F. Calle, Semicond. Sci. Technol. 18, 33 (2003)

    Article  Google Scholar 

  7. 7.

    M. Rusu, W. Eisele, R. Würz, A. Ennaoui, MCh Lux-Steiner, T.P. Niesen, F. Karg, J. Phys. Chem. Solids 64, 2037 (2003)

    CAS  Article  Google Scholar 

  8. 8.

    A. Antony, K.V. Mirali, R. Manoj, M.K. Jayaraj, Mater. Chem. Phys. 90, 106 (2005)

    CAS  Article  Google Scholar 

  9. 9.

    E. Hichou, M. Addou, J.L. Budendor, J. Ebothe, E. Idrissi, M. Troyon, Semicond. Sci. Technol. 19, 230 (2004)

    Article  Google Scholar 

  10. 10.

    B. Elidrissi, M. Addou, M. Regragui, A. Bougrine, A. Kachouane, J.C. Bernede, Mater. Chem. Phys. 68, 175 (2001)

    CAS  Article  Google Scholar 

  11. 11.

    N. Fathy, R. Kobayashi, M. Ichimura, Mater. Sci. Eng. B 107, 271 (2004)

    Article  Google Scholar 

  12. 12.

    J. Vidal, O. De Melo, O. Vigil, N. Lopez, G. Contreras-Puente, O. Zelaya-Angel, Thin Solid Films 419, 118 (2002)

    CAS  Article  Google Scholar 

  13. 13.

    S. Takata, T. Minami, T. Miyata, Thin Solid Films 193, 481 (1990)

    Article  Google Scholar 

  14. 14.

    A. El Hichou, M. Addou, J.L. Bubendorff, J. Ebothe, B. El Idrissi, M. Troyon, Semicond. Sci. Technol. 19(2), 230 (2003)

    Article  Google Scholar 

  15. 15.

    A.T. Salih, K.R. Gbashi, A.A. Najim, A.H. Malek, Mater. Res. Express 6(7), 076415 (2019)

    CAS  Article  Google Scholar 

  16. 16.

    K. Benyahia, A. Benhaya, M.S. Aida, J. Semicond. 36(10), 103001 (2015)

    Article  Google Scholar 

  17. 17.

    M. Mehrabian, Z. Esteki, H. Shokrvash, G. Kavei, J. Semicond. 37(10), 103002 (2016)

    Article  Google Scholar 

  18. 18.

    K.R. Gbashi, M.A.H. Muhi, A.A. Jabbar et al., Appl. Phys. A 126, 628 (2020). https://doi.org/10.1007/s00339-020-03801-1

    CAS  Article  Google Scholar 

  19. 19.

    M. Dongol, A. El-Denglawey, A.F. Elhady, A.A. Abuelwafa, Curr. Appl. Phys. 12, 1334 (2012)

    Article  Google Scholar 

  20. 20.

    K.R. Gbashi, Appl. Phys. A 126, 275 (2020). https://doi.org/10.1007/s00339-020-3419-6

    CAS  Article  Google Scholar 

  21. 21.

    R. Kirchheim, A. Pundt, in Physical Metallurgy, 5th edn. (Elsevier, Amsterdam, 2014), pp. 2837–2899. https://doi.org/10.1016/B978-0-444-53770-6.18001-3

  22. 22.

    K.R. Gbashi, A.T. Salih, A.A. Najim, A.H. Malek, J. Mater. Sci. Mater. Electron. 28, 15089 (2017)

    CAS  Article  Google Scholar 

  23. 23.

    D. Hull, D.J. Bacon, in Introduction to Dislocations, 5th edn, vol. 37 (Elsevier, Butterworth-Heinemann, Oxford, 2011). https://doi.org/10.1016/C2009-0-64358-0.

  24. 24.

    M. Öztaş, M. Bedir, A.N. Yazici, E.V. Kafadar, H. Toktamış, Phys. B 381(1–2), 40–46 (2006)

    Article  Google Scholar 

  25. 25.

    A.H. Malek, K.R. Gbashi, A.T. Salih, A.A. Najim, Plasmonics 13(1), 247–250 (2018)

    Article  Google Scholar 

  26. 26.

    J. Cui, U. Gibson, Phys. Rev. B 74, 0454161(1)–0454168(8) (2006)

    Article  Google Scholar 

  27. 27.

    S.H. Mohamed, J. Phys. D Appl. Phys. 43, 035406–035413 (2010)

    Article  Google Scholar 

  28. 28.

    C. Sabitha, K.D.A. Kumar, S. Valanarasu, A. Saranya, I.H. Joe, J. Mater. Sci. Mater. Electron. 29(6), 4612–4623 (2018)

    CAS  Article  Google Scholar 

  29. 29.

    K. Usha, R. Sivakumar, C. Sanjeeviraja, J. Appl. Phys. 114(12), 123501 (2013)

    Article  Google Scholar 

  30. 30.

    P. Sharma, A. Dahshan, K.A. Aly, J. Alloys Compd. 616, 323–327 (2014)

    CAS  Article  Google Scholar 

  31. 31.

    T. Girisun, S. Dhanuskodi, Cryst. Res. Technol 44, 1297–1302 (2009)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The author gratefully acknowledges the nanotechnology and advanced materials research center—the University of Technology for supporting this research.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kadhim R. Gbashi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gbashi, K.R., Hussein, A.K. Cu-doped ZnS coatings for optoelectronics with enhanced protection for UV radiations. J Mater Sci: Mater Electron 31, 17258–17268 (2020). https://doi.org/10.1007/s10854-020-04280-z

Download citation