Enhancing room temperature ethanol sensing using electrospun Ag-doped SnO2–ZnO nanofibers

Abstract

The present study reports room temperature ethanol sensing with improvement in response and recovery times using Ag-doped SnO2–ZnO composite nanofibers. A comparative study of nanofibers of solo SnO2, SnO2–ZnO nanocomposite and Ag-doped SnO2–ZnO nanocomposite is presented. Nanofibers of tin oxide and zinc oxide are deposited on low-cost aluminum electrodes using electrospinning technique to analyze their gas sensing characteristics towards volatile organic compounds, especially ethanol. The effect of Ag doping on nanocomposite of SnO2 and ZnO has been studied and analyzed in terms of various gas sensing parameters viz. % response, response/recovery time, and selectivity. Ag-doped SnO2–ZnO nanofibers have shown excellent response towards low concentration of ethanol (38.78% for 0.5 ppm) at room temperature (RT) with quick response and recovery times. X-ray diffraction, X-ray photoelectron spectroscopy, IV characterization, energy dispersive X-ray spectroscopy, and scanning electron microscopy characterizations are done to show the crystallite size, valence state, electrical properties, elemental analysis, and surface morphology of the deposited nanofibers, respectively. The effect of doping on the surface characteristics is also analyzed by calculating and comparing the crystallite size of doped and undoped nanofibers. Moreover, the use of sol–gel process route, electrospinning deposition technique, and aluminum as the electrode and glass substrate make the fabrication of the sensor very cost effective.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    Y. Bao, P. Xu, S. Cai, H. Yu, X. Li, Detection of volatile-organic-compounds (VOCs) in solution using cantilever-based gas sensors. Talanta 182, 148–155 (2018). https://doi.org/10.1016/j.talanta.2018.01.086

    CAS  Article  Google Scholar 

  2. 2.

    Y. Ustundağ, K. Huysal, Measurement uncertainty of blood ethanol concentration in drink-driving cases in an emergency laboratory. Biochem. Medica (2017). https://doi.org/10.11613/BM.2017.030708

    Article  Google Scholar 

  3. 3.

    F. Hruska, S. Plsek, Gas sensors and their selection. Int. J. Circuits Syst. Signal Process. 6(5), 350–358 (2012)

    Google Scholar 

  4. 4.

    B.P.J. De Lacy Costello, P. Evans, R.J. Ewen, H.E. Gunson, N.M. Ratcliffe, P.T.N. Spencer-Phillips, Identification of volatiles generated by potato tubers (Solanum tuberosum CV: Maris piper) infected by Erwinia carotovora, Bacillus polymyxa and Arthrobacter sp. Plant Pathol. 48(3), 345–351 (1999)

    Article  Google Scholar 

  5. 5.

    G. Neri, First fifty years of chemoresistive gas sensors. Chemosensors 3(1), 1–20 (2015). https://doi.org/10.3390/chemosensors3010001

    CAS  Article  Google Scholar 

  6. 6.

    R. Binions, A.J.T. Naik, Metal oxide semiconductor gas sensors in environmental monitoring. Semicond. Gas Sensors (2013). https://doi.org/10.1533/9780857098665.4.433

    Article  Google Scholar 

  7. 7.

    C. Li, M. Lv, J. Zuo, X. Huang, Open access SnO2 highly sensitive CO gas sensor based on Quasi-Molecular-Imprinting mechanism design. Sensors (Switzerland) 15(2), 3789–3800 (2015). https://doi.org/10.3390/s150203789

    CAS  Article  Google Scholar 

  8. 8.

    S. Leonardi, Two-dimensional zinc oxide nanostructures for gas sensor applications. Chemosensors 5(2), 17 (2017). https://doi.org/10.3390/chemosensors5020017

    CAS  Article  Google Scholar 

  9. 9.

    B. Yuliarto, G. Gumilar, N.L.W. Septiani, SnO2 nanostructure as pollutant gas sensors: synthesis, sensing performances, and mechanism. Adv. Mater. Sci. Eng. 2015, 1–14 (2015). https://doi.org/10.1155/2015/694823

    CAS  Article  Google Scholar 

  10. 10.

    M. Suchea, S. Christoulakis, K. Moschovis, N. Katsarakis, G. Kiriakidis, ZnO transparent thin films for gas sensor applications. Thin Solid Films 515(2), 551–554 (2006). https://doi.org/10.1016/j.tsf.2005.12.295

    CAS  Article  Google Scholar 

  11. 11.

    C. Wang, L. Yin, L. Zhang, D. Xiang, R. Gao, Metal oxide gas sensors: sensitivity and influencing factors. Sensors 10(3), 2088–2106 (2010). https://doi.org/10.3390/s100302088

    CAS  Article  Google Scholar 

  12. 12.

    L. Song et al., One-step electrospun SnO2/MOx heterostructured nanomaterials for highly selective gas sensor array integration. Sens. Actuators B Chem. 283, 793–801 (2019). https://doi.org/10.1016/j.snb.2018.12.097

    CAS  Article  Google Scholar 

  13. 13.

    T. Tharsika, A.S.M.A. Haseeb, S.A. Akbar, M.F. Mohd Sabri, W.Y. Hoong, Enhanced ethanol gas sensing properties of SnO2-core/ZnO-shell nanostructures. Sensors (Switzerland) 14(8), 14586–14600 (2014). https://doi.org/10.3390/s140814586

    CAS  Article  Google Scholar 

  14. 14.

    X. Song, L. Liu, Characterization of electrospun ZnO–SnO2 nanofibers for ethanol sensor. Sens. Actuators A Phys. 154(1), 175–179 (2009). https://doi.org/10.1016/j.sna.2009.06.010

    CAS  Article  Google Scholar 

  15. 15.

    W. Tang, J. Wang, Methanol sensing micro-gas sensors of SnO2–ZnO nanofibers on Si/SiO2/Ti/Pt substrate via stepwise-heating electrospinning. J. Mater. Sci. 50(12), 4209–4220 (2015). https://doi.org/10.1007/s10853-015-8972-6

    CAS  Article  Google Scholar 

  16. 16.

    L. Song et al., Reduced graphene oxide-coated Si nanowires for highly sensitive and selective detection of indoor formaldehyde. Nanoscale Res. Lett. (2019). https://doi.org/10.1186/s11671-019-2921-2

    Article  Google Scholar 

  17. 17.

    Y.J. Choi, I.S. Hwang, J.G. Park, K.J. Choi, J.H. Park, J.H. Lee, Novel fabrication of an SnO2 nanowire gas sensor with high sensitivity. Nanotechnology (2008). https://doi.org/10.1088/0957-4484/19/9/095508

    Article  Google Scholar 

  18. 18.

    D.J. Yang, I. Kamienchick, D.Y. Youn, A. Rothschild, I.D. Kim, Ultrasensitive and highly selective gas sensors based on electrospun SnO2 nanofibers modified by Pd loading. Adv. Funct. Mater. 20(24), 4258–4264 (2010). https://doi.org/10.1002/adfm.201001251

    CAS  Article  Google Scholar 

  19. 19.

    B. Ding, M. Wang, J. Yu, G. Sun, Gas sensors based on electrospun nanofibers. Sensors 9(3), 1609–1624 (2009). https://doi.org/10.3390/s90301609

    CAS  Article  Google Scholar 

  20. 20.

    Z.U. Abideen et al., Electrospun metal oxide composite nanofibers gas sensors: a review. J. Korean Ceram. Soc. 54(5), 366–379 (2017). https://doi.org/10.4191/kcers.2017.54.5.12

    CAS  Article  Google Scholar 

  21. 21.

    A. Aziz, N. Tiwale, S.A. Hodge, S.J. Attwood, G. Divitini, M.E. Welland, Core-shell electrospun polycrystalline ZnO nanofibers for ultra-sensitive NO2 gas sensing. ACS Appl. Mater. Interfaces 10(50), 43817–43823 (2018). https://doi.org/10.1021/acsami.8b17149

    CAS  Article  Google Scholar 

  22. 22.

    S. Nagirnyak, T. Dontsova, Effect of modification/doping on gas sensing properties of SnO2. Nano Res. Appl. (2017). https://doi.org/10.21767/2471-9838.100025

    Article  Google Scholar 

  23. 23.

    D. Degler, H.W. Pereira De Carvalho, K. Kvashnina, J.D. Grunwaldt, U. Weimar, N. Barsan, Structure and chemistry of surface-doped Pt: SnO2 gas sensing materials. RSC Adv. 6(34), 28149–28155 (2016). https://doi.org/10.1039/c5ra26302f

    CAS  Article  Google Scholar 

  24. 24.

    W. Chen, Q. Zhou, T. Gao, X. Su, F. Wan, Pd-doped SnO2-based sensor detecting characteristic fault hydrocarbon gases in transformer oil. J. Nanomater. (2013). https://doi.org/10.1155/2013/127345

    Article  Google Scholar 

  25. 25.

    H. Yu, J. Li, Y. Tian, Z. Li, Gas sensing and electrochemical behaviors of Ag-doped 3D spherical WO3 assembled by nanostrips to formaldehyde. Int. J. Electrochem. Sci. 13(10), 9281–9291 (2018). https://doi.org/10.20964/2018.10.52

    CAS  Article  Google Scholar 

  26. 26.

    K. Galatsis et al., P- and n-type Fe-doped SnO2 gas sensors fabricated by the mechanochemical processing technique. Sens. Actuators B Chem. 93(1–3), 562–565 (2003). https://doi.org/10.1016/S0925-4005(03)00233-8

    CAS  Article  Google Scholar 

  27. 27.

    L. Song et al., Sr-doped cubic In2O3/Rhombohedral In2O3 homojunction nanowires for highly sensitive and selective breath ethanol sensing: experiment and DFT simulation studies. ACS Appl. Mater. Interfaces 12(1), 1270–1279 (2020). https://doi.org/10.1021/acsami.9b15928

    CAS  Article  Google Scholar 

  28. 28.

    X. Zou et al., Rational design of sub-parts per million specific gas sensors array based on metal nanoparticles decorated nanowire enhancement-mode transistors. Nano Lett. 13(7), 3287–3292 (2013). https://doi.org/10.1021/nl401498t

    CAS  Article  Google Scholar 

  29. 29.

    F. Zhou, W. Jing, P. Liu, D. Han, Z. Jiang, Z. Wei, Doping Ag in ZnO nanorods to improve the performance of related enzymatic glucose sensors. Sensors (Switzerland) (2017). https://doi.org/10.3390/s17102214

    Article  Google Scholar 

  30. 30.

    S.M. Hosseini, I.A. Sarsari, P. Kameli, H. Salamati, Effect of Ag doping on structural, optical, and photocatalytic properties of ZnO nanoparticles. J. Alloys Compd. 640, 408–415 (2015). https://doi.org/10.1016/j.jallcom.2015.03.136

    CAS  Article  Google Scholar 

  31. 31.

    S. Kumaresan, K. Vallalperuman, S. Sathishkumar, A Novel one-step synthesis of Ag-doped ZnO nanoparticles for high performance photo-catalytic applications. J. Mater. Sci. Mater. Electron. 28(8), 5872–5879 (2017). https://doi.org/10.1007/s10854-016-6260-0

    CAS  Article  Google Scholar 

  32. 32.

    Y. Zhang, Z. Zheng, F. Yang, Highly sensitive and selective alcohol sensors based on Ag-doped In2O3 coating. Ind. Eng. Chem. Res. 49(8), 3539–3543 (2010). https://doi.org/10.1021/ie100197b

    CAS  Article  Google Scholar 

  33. 33.

    A.M. More, H.J. Sharma, S.B. Kondawar, S.P. Dongre, Ag–SnO2/Polyaniline composite nanofibers for low operating temperature hydrogen gas sensor. J. Mater. Nanosci. 4(1), 13–18 (2017)

    Google Scholar 

  34. 34.

    R. Zhang et al., Highly sensitive formaldehyde gas sensors based on Ag doped Zn2SnO4/SnO2 hollow nanospheres. Mater. Lett. 254, 178–181 (2019). https://doi.org/10.1016/j.matlet.2019.07.065

    CAS  Article  Google Scholar 

  35. 35.

    L. Ma et al., Preparation of Ag-doped ZnO–SnO2 hollow nanofibers with an enhanced ethanol sensing performance by electrospinning. Mater. Lett. 209, 188–192 (2017). https://doi.org/10.1016/j.matlet.2017.08.004

    CAS  Article  Google Scholar 

  36. 36.

    X. Liu, S. Cheng, H. Liu, S. Hu, D. Zhang, H. Ning, A survey on gas sensing technology. Sensors (Switzerland) 12(7), 9635–9665 (2012). https://doi.org/10.3390/s120709635

    CAS  Article  Google Scholar 

  37. 37.

    H. Tang, M. Yan, X. Ma, H. Zhang, M. Wang, D. Yang, Gas sensing behavior of polyvinylpyrrolidone-modified ZnO nanoparticles for trimethylamine. Sens. Actuators B Chem. 113(1), 324–328 (2006). https://doi.org/10.1016/j.snb.2005.03.024

    CAS  Article  Google Scholar 

  38. 38.

    G. Varughese, K.T. Usha, Optical studies in ZnS: Ce nanocrystallite. Chem. Sci. Trans. 3(4), 1354–1359 (2014). https://doi.org/10.7598/cst2014.923

    CAS  Article  Google Scholar 

  39. 39.

    H.P. Pham et al., Characterization of Ag-doped p-Type SnO thin films prepared by DC magnetron sputtering. J. Nanomater. (2017). https://doi.org/10.1155/2017/8360823

    Article  Google Scholar 

  40. 40.

    M.T. Uddin, M.E. Hoque, M. Chandra Bhoumick, Facile one-pot synthesis of heterostructure SnO2/ZnO photocatalyst for enhanced photocatalytic degradation of organic dye. RSC Adv. 10(40), 23554–23565 (2020). https://doi.org/10.1039/d0ra03233f

    CAS  Article  Google Scholar 

  41. 41.

    G.B. Hoflund, Z.F. Hazos, G.N. Salaita, Surface characterization study of Ag, using x-ray photoelectron spectroscopy a. Phys. Rev. B 62(16), 11126–11133 (2000). https://doi.org/10.1103/PhysRevB.62.11126

    CAS  Article  Google Scholar 

  42. 42.

    A. Beniwal, S. Kumar, Sunny, Baseline drift improvement through investigating a novel Ag Doped SnO2/ZnO nanocomposite for selective ethanol detection. IEEE Trans. Nanotechnol. 18, 412–420 (2019). https://doi.org/10.1109/TNANO.2019.2912497

    Article  Google Scholar 

  43. 43.

    M.A. Thomas, W.W. Sun, J.B. Cui, Mechanism of Ag doping in ZnO nanowires by electrodeposition: experimental and theoretical insights. J. Phys. Chem. C 116(10), 6383–6391 (2012). https://doi.org/10.1021/jp2107457

    CAS  Article  Google Scholar 

  44. 44.

    L. Xu, R. Xing, J. Song, W. Xu, H. Song, ZnO–SnO2nanotubes surface engineered by Ag nanoparticles: synthesis, characterization, and highly enhanced HCHO gas sensing properties. J. Mater. Chem. C 1(11), 2174–2182 (2013). https://doi.org/10.1039/c3tc00689a

    CAS  Article  Google Scholar 

  45. 45.

    J. Moon, J.A. Park, S.J. Lee, T. Zyung, Semiconducting ZnO nanofibers as gas sensors and gas response improvement by SnO2 coating. ETRI J. 31(6), 636–641 (2009). https://doi.org/10.4218/etrij.09.1209.0004

    Article  Google Scholar 

  46. 46.

    Z. Lu, Q. Zhou, C. Wang, Z. Wei, L. Xu, Y. Gui, Electrospun ZnO–SnO2 composite nanofibers and enhanced sensing properties to SF6 decomposition byproduct H2S. Front. Chem. (2018). https://doi.org/10.3389/fchem.2018.00540

    Article  Google Scholar 

  47. 47.

    R. Ab Kadir et al., Electrospun granular hollow SnO2 nanofibers hydrogen gas sensors operating at low temperatures. J. Phys. Chem. C 118(6), 3129–3139 (2014). https://doi.org/10.1021/jp411552z

    CAS  Article  Google Scholar 

  48. 48.

    A. Hastir, N. Kohli, R.C. Singh, Ag Doped ZnO nanowires as highly sensitive ethanol gas sensor. Mater. Today Proc. 4(9), 9476–9480 (2017). https://doi.org/10.1016/j.matpr.2017.06.207

    Article  Google Scholar 

  49. 49.

    R.J. Wu, D.J. Lin, M.R. Yu, M.H. Chen, H.F. Lai, Ag@SnO2 core-shell material for use in fast-response ethanol sensor at room operating temperature. Sens. Actuators B Chem. 178, 185–191 (2013). https://doi.org/10.1016/j.snb.2012.12.052

    CAS  Article  Google Scholar 

  50. 50.

    Z. Li et al., Advances in designs and mechanisms of semiconducting metal oxide nanostructures for high-precision gas sensors operated at room temperature. Mater. Horizons 6(3), 470–506 (2019). https://doi.org/10.1039/c8mh01365a

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This research work is supported by Indian Institute of Information Technology—Allahabad, under seed money research grant with file no. IIIT-A/DR (F&A)/Seed Money/2017/Int.85. The authors are grateful to Advance Center for Material Science (ACMS)—IIT (Kanpur) for providing Scanning Electron Microscopy facility and Institute Instrumentation center (IIC), IIT Roorkee for providing XPS facility.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sunny.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lalwani, S.K., Beniwal, A. & Sunny Enhancing room temperature ethanol sensing using electrospun Ag-doped SnO2–ZnO nanofibers. J Mater Sci: Mater Electron 31, 17212–17224 (2020). https://doi.org/10.1007/s10854-020-04276-9

Download citation