Skip to main content
Log in

Effects of gamma rays on elastomer multimode optical channel waveguides

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The paper reports on properties of the elastomer multimode optical channel waveguides. The waveguides were fabricated by the doctor blade technique using the nickel mold with the dimension of the core 50 × 50 µm2 and irradiated by gamma rays from 60Co source with the dose rate 1 kGy/h. The applied irradiations were 14.6 kGy and 33.9 kGy and we studied the influence of gamma rays on the properties of the elastomer waveguides. We measured transmission spectra, refractive indices and the waveguide propagation losses. The lowest values of the optical losses were 0.21 dB/cm at 1310 nm and 0.35 dB/cm at 850 nm in the samples irradiated with dose 14.6 kGy and 0.55 dB/cm at 1310 nm and 0.66 dB/cm at 850 nm for the sample irradiated with a higher dose 33.9 kGy. The average value of the optical losses at 650 nm was 0.78 dB/cm (dose 14.6 kGy) and 1.05 dB/cm (dose 33.9 kGy). Optical silicone elastomers have unique properties and can be used for the realization of the optical waveguides for interconnection or realization photonics structures for applications in extreme environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. C. Liu, Recent developments in polymer MEMS. Adv. Mater. 19(22), 3783–3790 (2007)

    Article  CAS  Google Scholar 

  2. F. Schneider, J. Draheirn, R. Kamberger, U. Wallrabe, Process and material properties of polydimethylsiloxane (PDMS) for Optical MEMS. Sens. Actuators A 151(2), 95–99 (2009)

    Article  CAS  Google Scholar 

  3. S.C. Fan, L.J. Meng, L. Dan, W. Zheng, X.H. Wang, Polymer microelectromechanical system-integrated flexible sensors for wearable technologies. IEEE Sens. J. 19(2), 443–450 (2019)

    Article  CAS  Google Scholar 

  4. D.C. Duffy, J.C. McDonald, O.J.A. Schueller, G.M. Whitesides, Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal. Chem. 70(23), 4974–4984 (1998)

    Article  CAS  Google Scholar 

  5. D.A. Chang-Yen, R.K. Eich, B.K. Gale, A monolithic PDMS waveguide system fabricated using soft-lithography techniques. J. Lightwave Technol. 23(6), 2088–2093 (2005)

    Article  CAS  Google Scholar 

  6. J.N. Lee, C. Park, G.M. Whitesides, Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices. Anal. Chem. 75(23), 6544–6554 (2003)

    Article  CAS  Google Scholar 

  7. J.M.K. Ng, I. Gitlin, A.D. Stroock, G.M. Whitesides, Components for integrated poly(dimethylsiloxane) microfluidic systems. Electrophoresis 23(20), 3461–3473 (2002)

    Article  CAS  Google Scholar 

  8. W.H. Chen, P.C. Chen, S.C. Wang, J.T. Yeh, C.Y. Huang, K.N. Chen, UV-curable PDMS-containing PU system for hydrophobic textile surface treatment. J. Polym. Res. 16(5), 601–610 (2009)

    Article  CAS  Google Scholar 

  9. C.C. Choi, L. Lin, Y.J. Liu, J.H. Choi, L. Wang, D. Haas, J. Magera, R.T. Chen, Flexible optical waveguide film fabrications and optoelectronic devices integration for fully embedded board-level optical interconnects. J. Ligthwave Technol. 22(9), 2168–2176 (2004)

    Article  Google Scholar 

  10. J. Missinne, S. Kalathimekkad, B. Van Hoe, E. Bosman, J. Vanfleteren, G. Van Steenberge, Stretchable optical waveguides. Opt. Express 22(4), 4168–4179 (2014)

    Article  CAS  Google Scholar 

  11. S. Girard, J. Kuhnhenn, A. Gusarov, B. Brichard, M. Van Uffelen, Y. Ouerdane, A. Boukenter, C. Marcandella, Radiation effects on silica-based optical fibers: recent advances and future challenges. IEEE Trans. Nucl. Sci. 60(3), 2015–2035 (2013)

    Article  CAS  Google Scholar 

  12. T. Wijnands, L.K. De Jonge, J. Kuhnhenn, S.K. Hoeffgen, U. Weinand, Optical absorption in commercial single mode optical fibers in a high energy physics radiation field. IEEE Trans. Nucl. Sci. 55(4), 2216–2222 (2008)

    Article  CAS  Google Scholar 

  13. K. Toh, T. Nakamura, K. Sakasai, K. Soyama, Effects of gamma-rays on polymethylmethacrylate plastic optical fiber under low dose-rate irradiation. IEEE Nuclear Science Symposium Conference Record, NPN1.M-149 (2011), pp. 347–349

  14. P. Stajanca, L. Mihai, D. Sporea, D. Negut, H. Sturm, M. Schukar, K. Krebber, Effects of gamma radiation on perfluorinated polymer optical fibers. Opt. Mater. 58, 226–233 (2016)

    Article  CAS  Google Scholar 

  15. LS-6943 (NuSil Technology LLC). https://www.avantorsciences.com/assetsvc/asset/en_US/id/29018084/contents/en_us_tds_nusils-6943.pdf. Accessed 17 June 2020

  16. LS-6946 (NuSil Technology LLC). https://www.avantorsciences.com/assetsvc/asset/en_US/id/29018090/contents/en_us_tds_nusils-6946.pdf. Accessed 17 June 2020

  17. Sylgard 184 (Dow Corning, supported ELCHEMCo). https://www.dow.com/content/dam/dcc/documents/en-us/productdatasheet/11/11-31/11-3184-sylgard-184-elastomer.pdf?iframe=true. Accessed 17 June 2020

  18. V. Prajzler, P. Nekvindova, J. Spirkova, M. Novotny, The evaluation of the refractive indices of bulk and thick polydimethylsiloxane and polydimethyl-diphenylsiloxane elastomers by the prism coupling technique. J. Mater. Sci. 28(11), 7951–7961 (2017)

    CAS  Google Scholar 

  19. V. Prajzler, P. Jašek, P. Nekvindová, Inorganic–organic hybrid polymer optical planar waveguides for micro-opto-electro-mechanical systems (MOEMS). Microsyst. Technol. 25(6), 2249–2258 (2019)

    Article  CAS  Google Scholar 

  20. V. Prajzler, M. Neruda, P. Jasek, P. Nekvindova, The properties of free-standing epoxy polymer multi-mode optical waveguides. Microsyst. Technol. 25, 257–264 (2019)

    Article  CAS  Google Scholar 

  21. V. Prajzler, M. Neruda, P. Nekvindova, Flexible multimode polydimethyl-diphenylsiloxane optical planar waveguides. J. Mater. Sci. 29(7), 5878–5884 (2018)

    CAS  Google Scholar 

  22. V. Prajzler, M. Neruda, M. Květoň, Flexible multimode optical elastomer waveguides. J. Mater. Sci. 30(18), 16983–16990 (2019)

    CAS  Google Scholar 

  23. D. Perez-Calixto, D. Zamarron-Hernandez, A. Cruz-Ramirez, M. Hautefeuille, J. Hernandez-Cordero, V. Velazquez, M. Grether, Fabrication of large all-PDMS micropatterned waveguides for lab on chip integration using a rapid prototyping technique. Opt. Mater. Express 7(4), 1343–1350 (2017)

    Article  CAS  Google Scholar 

  24. C.L. Bliss, J.N. McMullin, C.J. Backhouse, Rapid fabrication of a microfluidic device with integrated optical waveguides for DNA fragment analysis. Lab Chip 7(10), 1280–1287 (2007)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Our research has been supported by the Czech Technical University in Prague with the SGS program (SGS20/175/OHK3/3T/13) and Centre of Advanced Applied Natural Sciences", Reg. No. CZ.02.1.01/0.0/0.0/16_019/0000778, supported by the Operational Program Research, Development and Education, co-financed by the European Structural and Investment Funds and the state budget of the Czech Republic. We would like to also thank the staff of Radiation Chemistry and Environmental Qualification Department, ÚJV Řež, a. s. for the technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Václav Prajzler.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prajzler, V., Neruda, M. & Květoň, M. Effects of gamma rays on elastomer multimode optical channel waveguides. J Mater Sci: Mater Electron 31, 17202–17211 (2020). https://doi.org/10.1007/s10854-020-04274-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04274-x

Navigation