Oxidation and electrical behavior of AISI 430 steel coated with Ni–P–TiO2–ZrO2 composite for SOFC interconnect application

Abstract

AISI 430 stainless steel is used for interconnects in solid oxide fuel cells (SOFCs). One of the main problems with this steel is the formation of chromia scales during oxidation at high temperature and thus increasing electrical resistance. In order to solve such problems, a protective and conductive coating layer can be applied on interconnects. In this study, AISI 430 steel was coated by Ni–P–TiO2–ZrO2 composite coating. To evaluate the oxidation behavior, isothermal and cyclic oxidation tests were used at 800 °C. Area specific resistances (ASR) of uncoated and coated samples were also compared as a function of time during oxidation at 800 °C. Chemical composition and surface morphology of the samples were examined before and after oxidation by Scanning Electron Microscopy (SEM) and X-Ray Diffraction (XRD). In isothermal and cyclic oxidation tests, coated samples showed lower weight gain due to the formation of Ni2P2O7, Ni3P2O8, and NiFe2O4 spinel. This spinel prevented outward Cr diffusion, and improved the oxidation resistance of the AISI 430 stainless steel substrate. The obtained result by cyclic oxidation revealed that the coated substrates were resistant against cracking and spallation. Also, the results showed that the formation of Ni2P2O7, Ni3P2O8, and NiFe2O4 spinel and also the presence of TiO2 and ZrO2 caused ASR reduction. ASR of Ni–P–TiO2–ZrO2-coated specimens after 300 h of oxidation at 800 ºC (14.21 mΩ cm2) was lower than the uncoated specimens (41.84 mΩ m2) after the same time of oxidation.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

References

  1. 1.

    W.Z. Zhu, S. Deevi, Mater. Res. Bull. 38, 957 (2003)

    CAS  Google Scholar 

  2. 2.

    N. Shaigan, W. Qu, D.G. Ivey, W. Chen, J. Power Sources 195, 1529 (2010)

    CAS  Google Scholar 

  3. 3.

    T. Horita, Y. Xiong, K. Yamaji, N. Sakai, H. Yokokawa, J. Electrochem. Soc. 150, A243 (2003)

    CAS  Google Scholar 

  4. 4.

    T. Brylewski, M. Nanko, T. Maruyama, K. Przybylski, Solid State Ion 143, 131 (2001)

    CAS  Google Scholar 

  5. 5.

    H. Ebrahimifar, M. Zandrahimi, Oxid. Met. 84, 129 (2015)

    CAS  Google Scholar 

  6. 6.

    J.C. Mah, A. Muchtar, M.R. Somalu, M.J. Ghazali, Int. J. Hydrog. Energy 42, 9219 (2017)

    CAS  Google Scholar 

  7. 7.

    S. Geng, S. Qi, D. Xiang, S. Zhu, F. Wang, J. Power Sources 215, 274 (2012)

    CAS  Google Scholar 

  8. 8.

    Z. Xu, W. Xu, E. Stephens, B. Koeppel, Renew. Energy 113, 1472 (2017)

    CAS  Google Scholar 

  9. 9.

    S. Fontana, R. Amendola, S. Chevalier, P. Piccardo, G. Caboche, M. Viviani, R. Molins, M. Sennour, J. Power Sources 171, 652 (2007)

    CAS  Google Scholar 

  10. 10.

    H. Ebrahimifar, Oxid. Met. 91, 417 (2019)

    CAS  Google Scholar 

  11. 11.

    F. Saeidpour, M. Zandrahimi, H. Ebrahimifar, Int. J. Hydrog. Energy 44, 3157 (2019)

    CAS  Google Scholar 

  12. 12.

    Z. Bi, J. Zhu, J. Batey, J. Power Sources 195, 3605 (2010)

    CAS  Google Scholar 

  13. 13.

    P. Huczkowski, N. Christiansen, V. Shemet, J. Piron-Abellan, L. Singheiser, W. Quadakkers, J. Fuel Cell Sci. Technol. 1(1), 30–34 (2004)

    CAS  Google Scholar 

  14. 14.

    H. Kurokawa, C.P. Jacobson, L.C. DeJonghe, S.J. Visco, Solid State Ion 178, 287 (2007)

    CAS  Google Scholar 

  15. 15.

    R. Sachitanand, M. Sattari, J.E. Svensson, J. Froitzheim, Int. J. Hydrog. Energy 38, 15328 (2013)

    CAS  Google Scholar 

  16. 16.

    Y.C. Lin, J.G. Duh, J. Alloys Compd. 439, 74 (2007)

    CAS  Google Scholar 

  17. 17.

    B. Szczygieł, M. Kołodziej, Electrochim. Acta 50, 4188 (2005)

    Google Scholar 

  18. 18.

    J. Gao, Mater. Lett. 59, 1655 (2005)

    Google Scholar 

  19. 19.

    K.G. Keong, W. Sha, S. Malinov, J. Alloy. Compd. 334, 192 (2002)

    CAS  Google Scholar 

  20. 20.

    C.K. Chung, Y.J. Chen, W.M. Chen, C.R. Kao, Acta Mater. 60, 4586 (2012)

    CAS  Google Scholar 

  21. 21.

    M. Ernest Levin, F. McMurdie Howard. Phase diagrams for ceramist, Am. Ceram. Soc, cop; 1956–1959. Figure 2325.

  22. 22.

    M.A. Tena, R. Mendoza, J.R. García, S. García-Granda, Results Phys. 7, 1095 (2017)

    Google Scholar 

  23. 23.

    H. Gül, F. Kılıç, S. Aslan, A. Alp, H. Akbulut, Wear 267, 976 (2009)

    Google Scholar 

  24. 24.

    M. Alizadeh, M. Mirak, E. Salahinejad, M. Ghaffari, R. Amini, A. Roosta, J. Alloys Compd. 611, 161 (2014)

    CAS  Google Scholar 

  25. 25.

    Y. Sun, I. Flis-Kabulska, J. Flis, Mater. Chem. Phys. 145, 476 (2014)

    CAS  Google Scholar 

  26. 26.

    S. Geng, S. Qi, Q. Zhao, S. Zhu, F. Wang, Int. J. Hydrog. Energy 37, 10850 (2012)

    CAS  Google Scholar 

  27. 27.

    M. Abaei, M. Zandrahimi, H. Ebrahimifar, Int. J. Mater. Res. 110, 253 (2019)

    CAS  Google Scholar 

  28. 28.

    S. Mitra, S. Roy, S. Bose, Oxid. Met. 39, 221 (1993)

    CAS  Google Scholar 

  29. 29.

    R. Sen, S. Das, K. Das, Mater. Charact. 62, 257 (2011)

    CAS  Google Scholar 

  30. 30.

    H. Zhang, Y. Zhou, S. Jian-Feng, Trans. Nonferrous Met. Soc. China 23, 2011 (2013)

    CAS  Google Scholar 

  31. 31.

    R. Arghavanian, N. Parvini-Ahmadi, J. Solid State Electrochem. 15, 2199 (2011)

    CAS  Google Scholar 

  32. 32.

    F. Hou, W. Wang, H. Guo, Appl. Surf. Sci. 252, 3812 (2006)

    CAS  Google Scholar 

  33. 33.

    A. Laszczyńska, J. Winiarski, B. Szczygieł, I. Szczygieł, Appl. Surf. Sci. 369, 224 (2016)

    Google Scholar 

  34. 34.

    E. Khoran, M. Zandrahimi, H. Ebrahimifar, Oxid. Met. 91, 177 (2019)

    CAS  Google Scholar 

  35. 35.

    T. Tamilarasan, R. Rajendran, G. Rajagopal, J. Sudagar, Surf. Coat. Technol. 276, 320 (2015)

    CAS  Google Scholar 

  36. 36.

    Y. Wang, X. Shu, W. Gao, R. Shakoor, R. Kahraman, P. Yan, W. Lu, B. Yan, Int. J. Mod. Phys. B 29, 1540008 (2015)

    CAS  Google Scholar 

  37. 37.

    L. Benea, J. Appl. Electrochem. 39, 1671 (2009)

    CAS  Google Scholar 

  38. 38.

    F. Saeidpour, M. Zandrahimi, H. Ebrahimifar, Oxid. Met. 93, 87 (2020)

    CAS  Google Scholar 

  39. 39.

    A. Mosavi, H. Ebrahimifar, Int. J. Hydrog. Energy 45, 3145 (2020)

    CAS  Google Scholar 

  40. 40.

    Y. Zhou, J. Sun, S. Wang, H. Zhang, Corros. Sci. 63, 351 (2012)

    CAS  Google Scholar 

  41. 41.

    F. Saeidpour, M. Zandrahimi, H. Ebrahimifar, Corros. Sci. 153, 200 (2019)

    CAS  Google Scholar 

  42. 42.

    J. Pourasad, N. Ehsani, Z. Valefi, S.A. Khalifesoltani, Surf. Coat. Technol. 323, 58 (2017)

    CAS  Google Scholar 

  43. 43.

    Z. Duan, H. Yang, S. Kano, K. Murakami, Y. Satoh, Y. Takeda, H. Abe, Surf. Coat. Technol. 334, 319 (2018)

    CAS  Google Scholar 

  44. 44.

    H. Ebrahimifar, M. Zandrahimi, Bull. Mater. Sci. 18, 615 (2012)

    CAS  Google Scholar 

  45. 45.

    H. Ebrahimifar, M. Zandrahimi, Surf. Coat. Technol. 206, 75 (2011)

    CAS  Google Scholar 

  46. 46.

    A. Bund, D. Thiemig, Surf. Coat. Technol. 201, 7092 (2007)

    CAS  Google Scholar 

  47. 47.

    H. Ebrahimifar, M. Zandrahimi, Bull. Mater. Sci. 40, 1273 (2017)

    CAS  Google Scholar 

  48. 48.

    W. Quadakkers, J. Piron-Abellan, V. Shemet, L. Singheiser, Mater. at. High Temp. 20, 115 (2003)

    CAS  Google Scholar 

  49. 49.

    F. Saeidpour, M. Zandrahimi, H. Ebrahimifar, Mater. High Temp. 37(2), 89–100 (2020)

    CAS  Google Scholar 

  50. 50.

    X. Zhang, H. Zhang, X. Yang, C. Zeng, Int. J. Hydrog. Energy 43, 22458 (2018)

    CAS  Google Scholar 

  51. 51.

    J. Stringer, Mater. Sci. Eng. A 120, 129 (1989)

    Google Scholar 

  52. 52.

    H. Ebrahimifar, M. Zandrahimi, Oxid. Met. 84, 329 (2015)

    CAS  Google Scholar 

  53. 53.

    R.B. Alvarez, H.J. Martin, M. Horstemeyer, M.Q. Chandler, N. Williams, P.T. Wang, A. Ruiz, Corros. Sci. 52, 1635 (2010)

    CAS  Google Scholar 

  54. 54.

    A. Kruk, A. Adamczyk, A. Gil, S. Kąc, J. Dąbek, M. Ziąbka, T. Brylewski, Thin Solid Films 590, 184 (2015)

    CAS  Google Scholar 

  55. 55.

    T. Harthøj, P.M. Holt, J. Power Sources. 281, 227 (2015)

    Google Scholar 

  56. 56.

    L. Cooper, S. Benhaddad, A. Wood, D.G. Ivey, J. power sources. 184, 220 (2008)

    CAS  Google Scholar 

  57. 57.

    T. Brylewski, M. Nanko, T. Maruyama, K. Przybylski, Solid State Ionics 143, 131 (2001)

    CAS  Google Scholar 

  58. 58.

    M. Zandrahimi, J. Vatandoost, H. Ebrahimifar, J. Mater. Eng. Perform. 21, 2074 (2012)

    CAS  Google Scholar 

  59. 59.

    M.G.C. Cox, B. Mcenaney, V.D. Scott, Philos. Mag. 26, 839 (1972)

    CAS  Google Scholar 

  60. 60.

    H. Kurokawa, K. Kawamura, T. Maruyama, Solid State Ionics 168, 13 (2004)

    CAS  Google Scholar 

  61. 61.

    J. Sun, Y. Zhou, H. Zhang, Trans. Nonferrous Met. Soc. China 23, 1375 (2013)

    CAS  Google Scholar 

  62. 62.

    Z.G. Yang, Int. Mater. Rev. 53, 39 (2008)

    CAS  Google Scholar 

  63. 63.

    Phase Equilibria Diagrams Database, National Institute of Standards and Technology, American Ceramic Society, CD-ROM Database Version 2.1, Westerville, Ohio, 1998.

  64. 64.

    JADE Version 7 Software – XRD Processing, Identification and Quantification, Materials Data, Inc., 2004.

  65. 65.

    H. Ebrahimifar, M. Zandrahimi, Ionics 18, 615 (2012)

    CAS  Google Scholar 

  66. 66.

    E. N’Dah, S. Tsipas, M.P. Hierro, F.J. Pérez, Corros. Sci 49, 3850 (2007)

    Google Scholar 

  67. 67.

    S. Molin, B. Kusz, M. Gazda, P. Jasinski, J. Power Sources. 181, 31 (2008)

    CAS  Google Scholar 

  68. 68.

    N. Shaigan, W. Qu, D.G. Ivey, W. Chen, J. Power Sources. 195, 1592 (2010)

    Google Scholar 

  69. 69.

    O. Pint, Met. 45, 1 (1996)

    CAS  Google Scholar 

  70. 70.

    K. Przybylski, T. Brylewski, E. Durda, R. Gawel, A. Kruk, J. Therm. Anal. Calorim. 116, 825 (2014)

    CAS  Google Scholar 

  71. 71.

    A.M. Dayaghi, M. Askari, P. Gannon, Surf. Coat. Technol. 206, 3495 (2012)

    CAS  Google Scholar 

  72. 72.

    W. Qu, L. Jian, D.G. Ivey, J.M. Hill, J. Power Sources 157, 335 (2006)

    CAS  Google Scholar 

  73. 73.

    S. Chevalier, J. Larpin, Mater. Sci. Eng. A 363, 116 (2003)

    Google Scholar 

  74. 74.

    X. Xin, S. Wang, J. Qian, C. Lin, Z. Zhan, T. Wen, Int. J. Hydrog. Energy 37, 471 (2012)

    CAS  Google Scholar 

  75. 75.

    N. Shaigan, D.G. Ivey, W. Chen, J. Power Sources 185, 331 (2008)

    CAS  Google Scholar 

  76. 76.

    B.K. Kim, D.I. Kim, K.W. Yi, Corros. Sci. 130, 45 (2018)

    CAS  Google Scholar 

  77. 77.

    H. Ebrahimifar, M. Zandrahimi, Oxid. Met. 75, 125 (2011)

    CAS  Google Scholar 

  78. 78.

    W. Quadakkers, Mater. Corros. Sci. 41, 659 (1990)

    CAS  Google Scholar 

  79. 79.

    X. Zhang, P. You, H. Zhang, X. Yang, M. Luo, C. Zeng, Int. J. Hydrog. Energy 43, 3273 (2018)

    CAS  Google Scholar 

  80. 80.

    S.N. Hosseini, F. Karimzadeh, M.H. Enayati, N.M. Sammes, Solid State Ion 289, 95 (2016)

    CAS  Google Scholar 

  81. 81.

    J. Wu, C.D. Johnson, R.S. Gemmen, X. Liu, J. Power Sources 189, 1106 (2009)

    CAS  Google Scholar 

  82. 82.

    A. Petric, H. Ling, J. Am. Ceram. Soc. 90, 1515 (2007)

    CAS  Google Scholar 

  83. 83.

    Q.X. Fu, D. Sebold, F. Tietz, H.-P. Buchkremer, Solid State Ion 192, 376 (2011)

    CAS  Google Scholar 

  84. 84.

    N. Shaigan, D.G. Ivey, W. Chen, J. Power Sources 183, 651 (2008)

    CAS  Google Scholar 

  85. 85.

    N.S. Waluyo, B.K. Park, S.B. Lee, T.H. Lim, S.J. Park, R.H. Song, J.W. Lee, J. Solid State Electrochem. 18, 445 (2014)

    CAS  Google Scholar 

  86. 86.

    T. Uehara, N. Yasuda, M. Okamoto, Y. Baba, J. Power Sources 196, 7251 (2011)

    CAS  Google Scholar 

  87. 87.

    M.R. Bateni, P. Wei, X. Deng, A. Petric, Surf. Coat. Technol. 201, 4677 (2007)

    CAS  Google Scholar 

Download references

Acknowledgement

The authors would like to acknowledge the financial support of Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kemran, Iran, under Grant Number of 98/1361.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hadi Ebrahimifar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ebrahimifar, H. Oxidation and electrical behavior of AISI 430 steel coated with Ni–P–TiO2–ZrO2 composite for SOFC interconnect application. J Mater Sci: Mater Electron 31, 17183–17201 (2020). https://doi.org/10.1007/s10854-020-04267-w

Download citation