Skip to main content
Log in

Metal oxide-based composite for non-enzymatic glucose sensors

  • Review
  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The increasing demand for monitoring the glucose concentration in the blood of diabetic patients has aroused the attention of researchers to prepare high-performance glucose biosensors. After decades of development, enzyme-based biosensors have gradually matured and commercialized, but they still suffer from insufficient stability due to the inherent defects of the enzyme. Non-enzymatic glucose sensor was proposed to address this issue. The introduction of nanotechnology has provided more possibilities for the preparation of highly efficient catalytic materials. Among the synthesized electrocatalysts, metal oxides are one of the most important components owing to their outstanding properties. Recent studies have integrated metal oxides with other materials to further improve sensor performance. This review focuses on the application of metal oxide-based hybrid structure in the glucose sensor, mainly including metal oxide/metal oxide, metal/metal oxide, and carbon material/metal oxide. The preparation method, electrochemical properties, and catalytic mechanism of the sensors are discussed in detail. Finally, we present some of the existing challenges and make personal predictions for the future development of non-enzymatic glucose sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Copyright 2016, Elsevier

Fig. 4

Copyright 2018, Elsevier

Fig. 5

Copyright 2019, Springer

Fig. 6

Copyright 2011, Elsevier

Fig. 7

Copyright 2014, Elsevier

Fig. 8

Copyright 2019, Springer

Fig. 9

Copyright 2015, Elsevier

Fig. 10

Copyright 2020, Elsevier

Fig. 11

Copyright 2018, Springer

Fig. 12

Copyright 2018, Elsevier

Similar content being viewed by others

References

  1. A. Amer Diabet, Diagnosis and classification of diabetes mellitus. Diabetes Care 36, 67–74 (2013)

    Google Scholar 

  2. K.G.M.M. Alberti, P.Z. Zimmet, Definition, diagnosis and classification of diabetes mellitus and its complications Part 1: Diagnosis and classification of diabetes mellitus. Provisional report of a WHO consultation. Diabetic Med. 15, 539–553 (1998)

    CAS  Google Scholar 

  3. E.W. Gregg, N. Sattar, M.K. Ali, The changing face of diabetes complications. Lancet Diabetes Endocrinol. 4, 537–547 (2016)

    Google Scholar 

  4. K. Ogurtsova, J.D. da Rocha Fernandes, Y. Huang, U. Linnenkamp, L. Guariguata, N.H. Cho, D. Cavan, J.E. Shaw, L.E. Makaroff, IDF Diabetes Atlas: Global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Res Clin. Pract. 128, 40–50 (2017)

    CAS  Google Scholar 

  5. H. Han, Y. Li, H. Yue, Z. Zhou, D. Xiao, M.M.F. Choi, Clinical determination of glucose in human serum by a tomato skin biosensor. Clin. Chim. Acta 395, 155–158 (2008)

    CAS  Google Scholar 

  6. M.-S. Steiner, A. Duerkop, O.S. Wolfbeis, Optical methods for sensing glucose. Chem. Soc. Rev. 40, 4805–4839 (2011)

    CAS  Google Scholar 

  7. J. Luo, P. Luo, M. Xie, K. Du, B. Zhao, F. Pan, P. Fan, F. Zeng, D. Zhang, Z. Zheng, G. Liang, A new type of glucose biosensor based on surface acoustic wave resonator using Mn-doped ZnO multilayer structure. Biosens. Bioelectron. 49, 512–518 (2013)

    CAS  Google Scholar 

  8. J. Wang, Electrochemical glucose biosensors. Chem. Rev. 108, 814–825 (2008)

    CAS  Google Scholar 

  9. Q. Zhao, S. Chen, H. Huang, L. Zhang, L. Wang, F. Liu, J. Chen, Y. Zeng, P.K. Chu, Colorimetric and ultra-sensitive fluorescence resonance energy transfer determination of H2O2 and glucose by multi-functional Au nanoclusters. Analyst 139, 1498–1503 (2014)

    CAS  Google Scholar 

  10. Q. Liu, X. Lu, J. Li, X. Yao, J. Li, Direct electrochemistry of glucose oxidase and electrochemical biosensing of glucose on quantum dots/carbon nanotubes electrodes. Biosens. Bioelectron. 22, 3203–3209 (2007)

    CAS  Google Scholar 

  11. S. Park, H. Boo, T.D. Chung, Electrochemical non-enzymatic glucose sensors. Anal. Chim. Acta 556, 46–57 (2006)

    CAS  Google Scholar 

  12. L.C. Clarkcy, C. Lyons, Electrode systems for continuous monitoring in cardiovascular surgery. Ann. N. Y. Acad. Sci. 102, 29–45 (1962)

    Google Scholar 

  13. C. Chen, Q. Xie, D. Yang, H. Xiao, Y. Fu, Y. Tan, S. Yao, Recent advances in electrochemical glucose biosensors: a review. RSC Adv. 3, 4473–4491 (2013)

    CAS  Google Scholar 

  14. A.E.G. Cass, G. Davis, G.D. Francis, H.A.O. Hill, W.J. Aston, I.J. Higgins, E.V. Plotkin, L.D.L. Scott, A.P.F. Turner, Ferrocene-mediated enzyme electrode for amperometric determination of glucose. Anal. Chem. 56, 667–671 (1984)

    CAS  Google Scholar 

  15. P.D. Hale, T. Inagaki, H.I. Karan, Y. Okamoto, T.A. Skotheim, A new class of amperometric biosensor incorporating a polymeric electron-transfer mediator. J. Am. Chem. Soc. 111, 3482–3484 (1989)

    CAS  Google Scholar 

  16. Z. Zhu, L. Garcia-Gancedo, A.J. Flewitt, H. Xie, F. Moussy, W.I. Milne, A critical review of glucose biosensors based on carbon nanomaterials: carbon nanotubes and graphene. Sensors (Basel) 12, 5996–6022 (2012)

    Google Scholar 

  17. A. Heller, B. Feldman, Electrochemical glucose sensors and their applications in diabetes management. Chem. Rev. 108, 2482–2505 (2008)

    CAS  Google Scholar 

  18. K. Tian, M. Prestgard, A. Tiwari, A review of recent advances in nonenzymatic glucose sensors. Mater. Sci. Eng. C 41, 100–118 (2014)

    CAS  Google Scholar 

  19. Y. Degani, A. Heller, Direct electrical communication between chemically modified enzymes and metal electrodes. I. Electron transfer from glucose oxidase to metal electrodes via electron relays, bound covalently to the enzyme. J. Phys. Chem. 91, 1285–1289 (1987)

    CAS  Google Scholar 

  20. C. Zhang, Z. Zhang, Q. Yang, W. Chen, Graphene-based electrochemical glucose sensors: fabrication and sensing properties. Electroanalysis 30, 2504–2524 (2018)

    CAS  Google Scholar 

  21. S. Alwarappan, C. Liu, A. Kumar, C.-Z. Li, Enzyme-doped graphene nanosheets for enhanced glucose biosensing. J. Phys. Chem. C 114, 12920–12924 (2010)

    CAS  Google Scholar 

  22. K. Schugerl, B. Hitzmann, H. Jurgens, T. Kullick, R. Ulber, B. Weigal, Challenges in integrating biosensors and FIA for on-line monitoring and control. Trends Biotechnol. 14, 21–31 (1996)

    Google Scholar 

  23. H. Zhu, L. Li, W. Zhou, Z. Shao, X. Chen, Advances in non-enzymatic glucose sensors based on metal oxides. J. Mater. Chem. B 4, 7333–7349 (2016)

    CAS  Google Scholar 

  24. Y.B. Vassilyev, O.A. Khazova, N.N. Nikolaeva, Kinetics and mechanism of glucose electrooxidation on different electrode-catalysts. 1. adsorption and oxidation on platinum. J. Electroanal. Chem. 196, 105–125 (1985)

    Google Scholar 

  25. L.A. Larew, D.C. Johnson, Concentration dependence of the mechanism of glucose oxidation at gold electrodes in alkaline media. J. Electroanal. Chem. 262, 167–182 (1989)

    CAS  Google Scholar 

  26. S. Park, T.D. Chung, H.C. Kim, Nonenzymatic glucose detection using mesoporous platinum. Anal. Chem. 75, 3046–3049 (2003)

    CAS  Google Scholar 

  27. J.-S. Ye, Z.-T. Liu, C.-C. Lai, C.-T. Lo, C.-L. Lee, Diameter effect of electrospun carbon fiber support for the catalysis of Pt nanoparticles in glucose oxidation. Chem. Eng. J. 283, 304–312 (2016)

    CAS  Google Scholar 

  28. Y. Bai, Y. Sun, C. Sun, Pt–Pb nanowire array electrode for enzyme-free glucose detection. Biosens. Bioelectron. 24, 579–585 (2008)

    CAS  Google Scholar 

  29. G. Wang, X. Lu, T. Zhai, Y. Ling, H. Wang, Y. Tong, Y. Li, Free-standing nickel oxide nanoflake arrays: synthesis and application for highly sensitive non-enzymatic glucose sensors. Nanoscale 4, 3123–3127 (2012)

    CAS  Google Scholar 

  30. J. Yang, W.D. Zhang, S. Gunasekaran, An amperometric non-enzymatic glucose sensor by electrodepositing copper nanocubes onto vertically well-aligned multi-walled carbon nanotube arrays. Biosens. Bioelectron. 26, 279–284 (2010)

    CAS  Google Scholar 

  31. J. Huang, Y. Zhu, X. Yang, W. Chen, Y. Zhou, C. Li, Flexible 3D porous CuO nanowire arrays for enzymeless glucose sensing: in situ engineered versus ex situ piled. Nanoscale 7, 559–569 (2015)

    CAS  Google Scholar 

  32. Y. Shu, Y. Yan, J. Chen, Q. Xu, H. Pang, X. Hu, Ni and NiO nanoparticles decorated metal-organic framework nanosheets: facile synthesis and high-performance nonenzymatic glucose detection in human serum. ACS Appl. Mater. Interfaces 9, 22342–22349 (2017)

    CAS  Google Scholar 

  33. J. Xu, F. Li, D. Wang, M.H. Nawaz, Q. An, D. Han, L. Niu, Co3O4 nanostructures on flexible carbon cloth for crystal plane effect of nonenzymatic electrocatalysis for glucose. Biosens. Bioelectron. 123, 25–29 (2019)

    CAS  Google Scholar 

  34. P. Ranjan, A.D. Thakur, Solvent free tin oxide nanoparticle for gas sensing application. AIP Conf. Proc. 1728, 020616 (2016)

    Google Scholar 

  35. K. Xu, H. Ding, H. Lv, P. Chen, X. Lu, H. Cheng, T. Zhou, S. Liu, X. Wu, C. Wu, Y. Xie, Dual electrical-behavior regulation on electrocatalysts realizing enhanced electrochemical water oxidation. Adv. Mater. 28, 3326–3332 (2016)

    CAS  Google Scholar 

  36. H. Xia, D. Zhu, Z. Luo, Y. Yu, X. Shi, G. Yuan, J. Xie, Hierarchically structured Co3O4@Pt@MnO2 nanowire arrays for high-performance supercapacitors. Sci Rep 3, 2978 (2013)

    Google Scholar 

  37. D. Zhang, Z. Yang, S. Yu, Q. Mi, Q. Pan, Diversiform metal oxide-based hybrid nanostructures for gas sensing with versatile prospects. Coord. Chem. Rev. 413, 213272 (2020)

    CAS  Google Scholar 

  38. D. Zhang, J. Liu, C. Jiang, A. Liu, B. Xia, Quantitative detection of formaldehyde and ammonia gas via metal oxide-modified graphene-based sensor array combining with neural network model. Sens. Actuator B 240, 55–65 (2017)

    CAS  Google Scholar 

  39. P. Si, Y. Huang, T. Wang, J. Ma, Nanomaterials for electrochemical non-enzymatic glucose biosensors. RSC Adv. 3, 3487–3502 (2013)

    CAS  Google Scholar 

  40. D. Pletcher, Electrocatalysis: present and future. J. Appl. Electrochem. 14, 403–415 (1984)

    CAS  Google Scholar 

  41. K.E. Toghill, R.G. Compton, Electrochemical non-enzymatic glucose sensors: a perspective and an evaluation. Int. J. Electrochem. Sci. 5, 1246–1301 (2010)

    CAS  Google Scholar 

  42. M.W. Hsiao, R.R. Adžić, E.B. Yeager, Electrochemical oxidation of glucose on single crystal and polycrystalline gold surfaces in phosphate buffer. J. Electrochem. Soc. 143, 759–767 (1996)

    CAS  Google Scholar 

  43. G. Kokkindis, J.M. Leger, C. Lamy, Structural effects in electrocatalysis: oxidation of d-glucose on pt (100), (110) and (111) single crystal electrodes and the effect of upd adlayers of Pb, Tl and Bi. J. Electroanal. Chem. 242, 221–242 (1988)

    Google Scholar 

  44. L.D. Burke, Premonolayer oxidation and its role in electrocatalysis. Electrochim. Acta 39, 1841–1848 (1994)

    CAS  Google Scholar 

  45. G. Gnanakumar, G. Amala, S.M. Gowtham, Recent advancements, key challenges and solutions in non-enzymatic electrochemical glucose sensors based on graphene platforms. RSC Adv. 7, 36949–36976 (2017)

    CAS  Google Scholar 

  46. D.-W. Hwang, S. Lee, M. Seo, T.D. Chung, Recent advances in electrochemical non-enzymatic glucose sensors: a review. Anal. Chim. Acta 1033, 1–34 (2018)

    CAS  Google Scholar 

  47. S. Berchmans, H. Gomathi, G.P. Rao, Electrooxidation of alcohols and sugars catalysed on a nickel oxide modified glassy carbon electrode. J. Electroanal. Chem. 394, 267–270 (1995)

    Google Scholar 

  48. J.M. Marioli, T. Kuwana, Electrochemical characterization of carbohydrate oxidation at copper electrodes. Electrochim. Acta 37, 1187–1197 (1992)

    CAS  Google Scholar 

  49. T.R.I. Cataldi, I.G. Casella, E. Desimoni, T. Rotunno, Cobalt-based glassy carbon chemically modified electrode for constant-potential amperometric detection of carbohydrates in flow-injection analysis and liquid chromatography. Anal. Chim. Acta 270, 161–171 (1992)

    CAS  Google Scholar 

  50. E. Reitz, W. Jia, M. Gentile, Y. Wang, Y. Lei, CuO nanospheres based nonenzymatic glucose sensor. Electroanalysis 20, 2482–2486 (2008)

    CAS  Google Scholar 

  51. C. Guo, Y. Wang, Y. Zhao, C. Xu, Non-enzymatic glucose sensor based on three dimensional nickel oxide for enhanced sensitivity. Anal. Methods 5, 1644–1647 (2013)

    CAS  Google Scholar 

  52. A. Tarlani, M. Fallah, B. Lotfi, A. Khazraei, S. Golsanamlou, J. Muzart, M. Mirza-Aghayan, New ZnO nanostructures as non-enzymatic glucose biosensors. Biosens. Bioelectron. 67, 601–607 (2015)

    CAS  Google Scholar 

  53. M. Kang, H. Zhou, N. Zhao, B. Lv, Porous Co3O4 nanoplates as an efficient electromaterial for non-enzymatic glucose sensing. CrystEngComm 22, 35–43 (2020)

    CAS  Google Scholar 

  54. W. Zeng, H. Zhang, Z. Wang, Effects of different petal thickness on gas sensing properties of flower-like WO3·H2O hierarchical architectures. Appl. Surf. Sci. 347, 73–78 (2015)

    CAS  Google Scholar 

  55. Y. Chen, T. Liu, C. Chen, W. Guo, R. Sun, S. Lv, M. Saito, S. Tsukimoto, Z. Wang, Synthesis and characterization of CeO2 nano-rods. Ceram. Int. 39, 6607–6610 (2013)

    CAS  Google Scholar 

  56. J. Wang, W. Zeng, Z. Wang, Assembly of 2D nanosheets into 3D flower-like NiO: synthesis and the influence of petal thickness on gas-sensing properties. Ceram. Int. 42, 4567–4573 (2016)

    CAS  Google Scholar 

  57. L.C. Jiang, W.D. Zhang, A highly sensitive nonenzymatic glucose sensor based on CuO nanoparticles-modified carbon nanotube electrode. Biosens. Bioelectron. 25, 1402–1407 (2010)

    CAS  Google Scholar 

  58. Y. Zhang, Y. Liu, L. Su, Z. Zhang, D. Huo, C. Hou, Y. Lei, CuO nanowires based sensitive and selective non-enzymatic glucose detection. Sens. Actuator B 191, 86–93 (2014)

    CAS  Google Scholar 

  59. H.H. Mai, D.H. Tran, E. Janssens, Non-enzymatic fluorescent glucose sensor using vertically aligned ZnO nanotubes grown by a one-step, seedless hydrothermal method. Microchim. Acta 186, 245 (2019)

    Google Scholar 

  60. H. Yin, J. Zhu, J. Chen, J. Gong, Q. Nie, PEG-templated assembling of Co3O4 nanosheets with nanoparticles for enhanced sensitive non-enzymatic glucose sensing performance. J. Mater. Sci.-Mater. Electron. 29, 17305–17313 (2018)

    CAS  Google Scholar 

  61. J. Song, L. Xu, R. Xing, W. Qin, Q. Dai, H. Song, Ag nanoparticles coated NiO nanowires hierarchical nanocomposites electrode for nonenzymatic glucose biosensing. Sens. Actuator B 182, 675–681 (2013)

    CAS  Google Scholar 

  62. R. Ramasamy, K. Ramachandran, G.G. Philip, R. Ramachandran, H.A. Therese, G. Gnanakumar, Design and development of Co3O4/NiO composite nanofibers for the application of highly sensitive and selective non-enzymatic glucose sensors. RSC Adv. 5, 76538–76547 (2015)

    CAS  Google Scholar 

  63. Y. Liu, H. Pang, C. Wei, M. Hao, S. Zheng, M. Zheng, Mesoporous ZnO–NiO architectures for use in a high-performance nonenzymatic glucose sensor. Microchim. Acta 181, 1581–1589 (2014)

    CAS  Google Scholar 

  64. Q. Guo, W. Zeng, S. Liu, Y. Li, In situ formation of Co3O4 hollow nanocubes on carbon cloth-supported NiCo2O4 nanowires and their enhanced performance in non-enzymatic glucose sensing. Nanotechnology 31, 265501 (2020)

    CAS  Google Scholar 

  65. Z. Gao, L. Zhang, C. Ma, Q. Zhou, Y. Tang, Z. Tu, W. Yang, L. Cui, Y. Li, TiO2 decorated Co3O4 acicular nanotube arrays and its application as a non-enzymatic glucose sensor. Biosens. Bioelectron. 80, 511–518 (2016)

    CAS  Google Scholar 

  66. Q. Guo, M. Zhang, X. Li, X. Li, H. Li, Y. Lu, X. Song, L. Wang, A novel CuO/TiO2 hollow nanofiber film for non-enzymatic glucose sensing. RSC Adv. 6, 99969–99976 (2016)

    CAS  Google Scholar 

  67. Z. Zhou, Z. Zhu, F. Cui, J. Shao, H.S. Zhou, CuO/Cu composite nanospheres on a TiO2 nanotube array for amperometric sensing of glucose. Mikrochim. Acta 187, 123 (2020)

    CAS  Google Scholar 

  68. M. Zhang, W. Zhang, F. Chen, C. Hou, A. Halder, Q. Chi, Nanoporous hybrid CuO/ZnO/carbon papers used as ultrasensitive non-enzymatic electrochemical sensors. RSC Adv. 9, 41886–41892 (2019)

    CAS  Google Scholar 

  69. P. Ranjan, S. Agrawal, A. Sinha, T.R. Rao, J. Balakrishnan, A.D. Thakur, A low-cost non-explosive synthesis of graphene oxide for scalable applications. Sci Rep 8, 12007 (2018)

    Google Scholar 

  70. P. Ranjan, P. Tiwary, A.K. Chakraborty, R. Mahapatra, A.D. Thakur, Graphene oxide based free-standing films for humidity and hydrogen peroxide sensing. J. Mater. Sci.-Mater. Electron. 29, 15946–15956 (2018)

    CAS  Google Scholar 

  71. P. Ranjan, A. Kumar, A.D. Thakur, free standing graphene oxide films for gas sensing applications. Mater. Today 5, 732–736 (2018)

    CAS  Google Scholar 

  72. P. Ranjan, J. Balakrishnan, A.D. Thakur, Free standing graphene oxide film for hydrogen peroxide sensing. AIP Conf. Proc. 1953, 030029 (2018)

    Google Scholar 

  73. R. Ahmad, N. Tripathy, M.S. Ahn, K.S. Bhat, T. Mahmoudi, Y. Wang, J.Y. Yoo, D.W. Kwon, H.Y. Yang, Y.B. Hahn, Highly efficient non-enzymatic glucose sensor based on CuO modified vertically-grown ZnO nanorods on electrode. Sci Rep 7, 5715 (2017)

    Google Scholar 

  74. L. Sinha, S. Pakhira, P. Bhojane, S. Mali, C.K. Hong, P.M. Shirage, Hybridization of Co3O4 and α-MnO2 nanostructures for high-performance nonenzymatic glucose sensing. ACS Sustain. Chem. Eng. 6, 13248–13261 (2018)

    CAS  Google Scholar 

  75. Q.-Q. Zhou, M.-P. Zhuo, R. Chen, S.-Z. Wang, Z.-S. Wang, M. Zheng, L.-S. Liao, Controllable synthesis of barnyardgrass-like CuO/Cu2O heterostructure nanowires for highly sensitive non-enzymatic glucose sensors. J. Mater. Chem. C 7, 14874–14880 (2019)

    CAS  Google Scholar 

  76. K. Zhang, W. Zeng, G. Zhang, S. Hou, F. Wang, T. Wang, H. Duan, Hierarchical CuCo2O4 nanowire@NiCo2O4 nanosheet core/shell arrays for high-performance supercapacitors. RSC Adv. 5, 69636–69641 (2015)

    CAS  Google Scholar 

  77. X. Wu, Z. Han, X. Zheng, S. Yao, X. Yang, T. Zhai, Core-shell structured Co3O4@NiCo2O4 electrodes grown on flexible carbon fibers with superior electrochemical properties. Nano Energy 31, 410–417 (2017)

    CAS  Google Scholar 

  78. H. Liu, Z. Guo, X. Xun, J. Lian, Hierarchical Cu(OH)2/Co2(OH)2CO3 nanohybrid arrays grown on copper foam for high-performance battery-type supercapacitors. J. Mater. Sci.-Mater. Electron. 30, 11952–11963 (2019)

    CAS  Google Scholar 

  79. K.V. Rao, K. Bikshalu, V. Malapati, K.K. Sadasivuni, Non-enzymatic sensing of glucose using screen-printed electrode modified with novel synthesized CeO2@CuO core shell nanostructure. Biosens. Bioelectron. 111, 166–173 (2018)

    Google Scholar 

  80. S. Cheng, S. DelaCruz, C. Chen, Z. Tang, T. Shi, C. Carraro, R. Maboudian, Hierarchical Co3O4/CuO nanorod array supported on carbon cloth for highly sensitive non-enzymatic glucose biosensing. Sens. Actuator B 298, 126860 (2019)

    CAS  Google Scholar 

  81. L. Long, X. Liu, L. Chen, D. Li, J. Jia, A hollow CuOx/NiOy nanocomposite for amperometric and non-enzymatic sensing of glucose and hydrogen peroxide. Mikrochim. Acta 186, 74 (2019)

    Google Scholar 

  82. M. Liu, Y. Wang, D. Lu, Sensitive and selective non-enzymatic glucose detection using electrospun porous CuO–CdO composite nanofibers. J. Mater. Sci. 54, 3354–3367 (2018)

    Google Scholar 

  83. J. Li, L. Yan, H. Wang, H. Wang, X. Chen, L. Wang, M. Wu, Au NPs/ITO prepared by dopamine reduction and its application in glucose sensing. J. Mater. Sci.-Mater. Electron. 28, 3067–3074 (2017)

    CAS  Google Scholar 

  84. F. Kurniawan, V. Tsakova, V.M. Mirsky, Gold nanoparticles in nonenzymatic electrochemical detection of sugars. Electroanalysis 18, 1937–1942 (2006)

    CAS  Google Scholar 

  85. X.-M. Chen, Z.-J. Lin, D.-J. Chen, T.-T. Jia, Z.-M. Cai, X.-R. Wang, X. Chen, G.-N. Chen, M. Oyama, Nonenzymatic amperometric sensing of glucose by using palladium nanoparticles supported on functional carbon nanotubes. Biosens. Bioelectron. 25, 1803–1808 (2010)

    CAS  Google Scholar 

  86. T. Dayakar, K.V. Rao, K. Bikshalu, V. Rajendar, S.H. Park, Novel synthesis and characterization of pristine Cu nanoparticles for the non-enzymatic glucose biosensor. J. Mater. Sci. Mater. Med. 28, 109 (2017)

    CAS  Google Scholar 

  87. F. Xiao, F. Zhao, D. Mei, Z. Mo, B. Zeng, Nonenzymatic glucose sensor based on ultrasonic-electrodeposition of bimetallic PtM (M=Ru, Pd and Au) nanoparticles on carbon nanotubes–ionic liquid composite film. Biosens. Bioelectron. 24, 3481–3486 (2009)

    CAS  Google Scholar 

  88. S.Y. Tee, C.P. Teng, E. Ye, Metal nanostructures for non-enzymatic glucose sensing. Mater. Sci. Eng. C 70, 1018–1030 (2017)

    CAS  Google Scholar 

  89. Y. Ding, Y. Wang, L. Su, H. Zhang, Y. Lei, Preparation and characterization of NiO–Ag nanofibers, NiO nanofibers, and porous Ag: towards the development of a highly sensitive and selective non-enzymatic glucose sensor. J. Mater. Chem. 20, 9918 (2010)

    CAS  Google Scholar 

  90. Y. Ding, Y. Liu, J. Parisi, L. Zhang, Y. Lei, A novel NiO–Au hybrid nanobelts based sensor for sensitive and selective glucose detection. Biosens. Bioelectron. 28, 393–398 (2011)

    CAS  Google Scholar 

  91. Y. Ding, Y. Liu, L. Zhang, Y. Wang, M. Bellagamba, J. Parisi, C.M. Li, Y. Lei, Sensitive and selective nonenzymatic glucose detection using functional NiO–Pt hybrid nanofibers. Electrochim. Acta 58, 209–214 (2011)

    CAS  Google Scholar 

  92. X. Zhang, A. Gu, G. Wang, Y. Huang, H. Ji, B. Fang, Porous Cu–NiO modified glass carbon electrode enhanced nonenzymatic glucose electrochemical sensors. Analyst 136, 5175–5180 (2011)

    CAS  Google Scholar 

  93. Y. Zhang, P. Xiao, X. Zhou, D. Liu, B.B. Garcia, G. Cao, Carbon monoxide annealed TiO2 nanotube array electrodes for efficient biosensor applications. J. Mater. Chem. 19, 948–953 (2009)

    CAS  Google Scholar 

  94. J.M. Macak, F. Schmidt-Stein, P. Schmuki, Efficient oxygen reduction on layers of ordered TiO2 nanotubes loaded with Au nanoparticles. Electrochem. Commun. 9, 1783–1787 (2007)

    CAS  Google Scholar 

  95. S. Mahshid, C. Li, S.S. Mahshid, M. Askari, A. Dolati, L. Yang, S. Luo, Q. Cai, Sensitive determination of dopamine in the presence of uric acid and ascorbic acid using TiO2 nanotubes modified with Pd Pt and Au nanoparticles. Analyst 136, 2322–2329 (2011)

    CAS  Google Scholar 

  96. Y.Q. Liang, Z.D. Cui, S.L. Zhu, X.J. Yang, Formation and characterization of iron oxide nanoparticles loaded on self-organized TiO2 nanotubes. Electrochim. Acta 55, 5245–5252 (2010)

    CAS  Google Scholar 

  97. M.M. Momeni, M.G. Hosseini, Different TiO2 nanotubes for back illuminated dye sensitized solar cell: fabrication, characterization and electrochemical impedance properties of DSSCs. J. Mater. Sci.-Mater. Electron. 25, 5027–5034 (2014)

    CAS  Google Scholar 

  98. Y. Wang, J. Chen, C. Zhou, L. Zhou, Y. Kong, H. Long, S. Zhong, A novel self-cleaning, non-enzymatic glucose sensor working under a very low applied potential based on a Pt nanoparticle-decorated TiO2 nanotube array electrode. Electrochim. Acta 115, 269–276 (2014)

    CAS  Google Scholar 

  99. J. Chen, Y. Kang, C. Li, H. Chen, L. Sun, Y. Wang, S. Zhong, A Pt/TiO2 nanotube array electrode for glucose detection and its photoelectrocatalysis self-cleaning ability. J. Electrochem. Soc. 164, B66–B73 (2016)

    Google Scholar 

  100. X. Wang, X. Xia, X. Zhang, W. Meng, C. Yuan, M. Guo, Nonenzymatic glucose sensor based on Ag&Pt hollow nanoparticles supported on TiO2 nanotubes. Mater. Sci. Eng. C 80, 174–179 (2017)

    CAS  Google Scholar 

  101. C. Xu, L. Cheng, P. Shen, Y. Liu, Methanol and ethanol electrooxidation on Pt and Pd supported on carbon microspheres in alkaline media. Electrochem. Commun. 9, 997–1001 (2007)

    CAS  Google Scholar 

  102. X. Chen, G. Li, G. Zhang, K. Hou, H. Pan, M. Du, Self-assembly of palladium nanoparticles on functional TiO2 nanotubes for a nonenzymatic glucose sensor. Mater. Sci. Eng. C 62, 323–328 (2016)

    CAS  Google Scholar 

  103. K. Grochowska, J. Ryl, J. Karczewski, G. Śliwiński, A. Cenian, K. Siuzdak, Non-enzymatic flexible glucose sensing platform based on nanostructured TiO2–Au composite. J. Electroanal. Chem. 837, 230–239 (2019)

    CAS  Google Scholar 

  104. S. Yu, X. Peng, G. Cao, M. Zhou, L. Qiao, J. Yao, H. He, Ni nanoparticles decorated titania nanotube arrays as efficient nonenzymatic glucose sensor. Electrochim. Acta 76, 512–517 (2012)

    CAS  Google Scholar 

  105. W.T. Chiu, T.M. Chang, M. Sone, A. Tixier-Mita, H. Toshiyoshi, Roles of TiO2 in the highly robust Au nanoparticles-TiO2 modified polyaniline electrode towards non-enzymatic sensing of glucose. Talanta 212, 120780 (2020)

    CAS  Google Scholar 

  106. W. Guo, M. Fu, C. Zhai, Z. Wang, Hydrothermal synthesis and gas-sensing properties of ultrathin hexagonal ZnO nanosheets. Ceram. Int. 40, 2295–2298 (2014)

    CAS  Google Scholar 

  107. H. Albaris, G. Karuppasamy, CuO–ZnO p–n junction enhanced oxygen sensing property of polypyrrole nanocomposite at room temperature. J. Mater. Sci.-Mater. Electron. 30, 9989–9998 (2019)

    CAS  Google Scholar 

  108. C. Karuppiah, M. Velmurugan, S.-M. Chen, S.-H. Tsai, B.-S. Lou, M. Ajmal Ali, F.M.A. Al-Hemaid, A simple hydrothermal synthesis and fabrication of zinc oxide–copper oxide heterostructure for the sensitive determination of nonenzymatic glucose biosensor. Sens. Actuator B 221, 1299–1306 (2015)

    CAS  Google Scholar 

  109. T. Kong, Y. Chen, Y. Ye, K. Zhang, Z. Wang, X. Wang, An amperometric glucose biosensor based on the immobilization of glucose oxidase on the ZnO nanotubes. Sens. Actuator B 138, 344–350 (2009)

    CAS  Google Scholar 

  110. C.L. Hsu, Y.J. Fang, T.J. Hsueh, S.H. Wang, S.J. Chang, Nonenzymatic glucose sensor based on Au/ZnO core-shell nanostructures decorated with au nanoparticles and enhanced with blue and green light. J. Phys. Chem. B 121, 2931–2941 (2017)

    CAS  Google Scholar 

  111. W. Wu, F. Miao, B. Tao, Y. Zang, L. Zhu, C. Shi, P.K. Chu, Hybrid ZnO–graphene electrode with palladium nanoparticles on Ni foam and application to self-powered nonenzymatic glucose sensing. RSC Adv. 9, 12134–12145 (2019)

    CAS  Google Scholar 

  112. Y. Yang, Y. Wang, X. Bao, H. Li, Electrochemical deposition of Ni nanoparticles decorated ZnO hexagonal prisms as an effective platform for non-enzymatic detection of glucose. J. Electroanal. Chem. 775, 163–170 (2016)

    CAS  Google Scholar 

  113. J. Sultana, S. Paul, A. Karmakar, G.K. Dalapati, S. Chattopadhyay, Optimizing the thermal annealing temperature: technological route for tuning the photo-detecting property of p-CuO thin films grown by chemical bath deposition method. J. Mater. Sci.-Mater. Electron. 29, 12878–12887 (2018)

    CAS  Google Scholar 

  114. M.S. Jagadeesan, K. Movlaee, T. Krishnakumar, S.G. Leonardi, G. Neri, One-step microwave-assisted synthesis and characterization of novel CuO nanodisks for non-enzymatic glucose sensing. J. Electroanal. Chem. 835, 161–168 (2019)

    CAS  Google Scholar 

  115. X. Liu, W. Yang, L. Chen, J. Jia, Three-dimensional copper foam supported cuo nanowire arrays: an efficient non-enzymatic glucose sensor. Electrochim. Acta 235, 519–526 (2017)

    CAS  Google Scholar 

  116. F. Sun, R. Zhu, H. Jiang, H. Huang, P. Liu, Y. Zheng, Synthesis of novel CuO nanosheets with porous structure and their non-enzymatic glucose sensing applications. Electroanalysis 27, 1238–1244 (2015)

    CAS  Google Scholar 

  117. S.G. Leonardi, S. Marini, C. Espro, A. Bonavita, S. Galvagno, G. Neri, In-situ grown flower-like nanostructured CuO on screen printed carbon electrodes for non-enzymatic amperometric sensing of glucose. Microchim. Acta 184, 2375–2385 (2017)

    CAS  Google Scholar 

  118. B. Zheng, G. Liu, A. Yao, Y. Xiao, J. Du, Y. Guo, D. Xiao, Q. Hu, M.M.F. Choi, A sensitive AgNPs/CuO nanofibers non-enzymatic glucose sensor based on electrospinning technology. Sens. Actuator B 195, 431–438 (2014)

    CAS  Google Scholar 

  119. T. Dayakar, K. VenkateswaraRao, J. Park, P. Krishna, P. Swaroopa, Y. Ji, Biosynthesis of Ag@CuO core–shell nanostructures for non-enzymatic glucose sensing using screen-printed electrode, J. Mater. Sci.-Mater. Electron. 30, 9725–9734 (2019).

  120. P. Viswanathan, K. Wang, J. Li, J.-D. Hong, Multicore-shell Ag–CuO networked with CuO nanorods for enhanced non-enzymatic glucose detection. Colloids Surf. Physicochem. Eng. Aspects 598, 124816 (2020)

    CAS  Google Scholar 

  121. S. Felix, A.N. Grace, R. Jayavel, Sensitive electrochemical detection of glucose based on Au–CuO nanocomposites. J. Phys. Chem. Solids 122, 255–260 (2018)

    CAS  Google Scholar 

  122. S. Felix, B.P. Chakkravarthy, S.K. Jeong, A.N. Grace, Synthesis of Pt decorated copper oxide nanoleaves and its electrochemical detection of glucose. J. Electrochem. Soc. 162, H392–H396 (2015)

    CAS  Google Scholar 

  123. P. Chakraborty, S. Dhar, K. Debnath, T. Majumder, S.P. Mondal, Non-enzymatic and non-invasive glucose detection using Au nanoparticle decorated CuO nanorods. Sens. Actuator B 283, 776–785 (2019)

    CAS  Google Scholar 

  124. A.K. Mishra, B. Mukherjee, A. Kumar, D.K. Jarwal, S. Ratan, C. Kumar, S. Jit, Superficial fabrication of gold nanoparticles modified CuO nanowires electrode for non-enzymatic glucose detection. RSC Adv. 9, 1772–1781 (2019)

    CAS  Google Scholar 

  125. P. Liu, M. Zhang, S. Xie, S. Wang, W. Cheng, F. Cheng, Non-enzymatic glucose biosensor based on palladium-copper oxide nanocomposites synthesized via galvanic replacement reaction. Sens. Actuator B 253, 552–558 (2017)

    CAS  Google Scholar 

  126. L. Tang, K. Huan, D. Deng, L. Han, Z. Zeng, L. Luo, Glucose sensor based on Pd nanosheets deposited on Cu/Cu2O nanocomposites by galvanic replacement. Colloids Surf. B 188, 110797 (2020)

    CAS  Google Scholar 

  127. Y. Su, H. Guo, Z. Wang, Y. Long, W. Li, Y. Tu, Au@Cu2O core–shell structure for high sensitive non-enzymatic glucose sensor. Sens. Actuator B 255, 2510–2519 (2018)

    CAS  Google Scholar 

  128. Y. Pei, M. Hu, X. Tang, W. Huang, Z. Li, S. Chen, Y. Xia, Ultrafast one-pot anodic preparation of Co3O4/nanoporous gold composite electrode as an efficient nonenzymatic amperometric sensor for glucose and hydrogen peroxide. Anal. Chim. Acta 1059, 49–58 (2019)

    CAS  Google Scholar 

  129. X. Lin, Y. Wang, W. He, Y. Ni, S. Kokot, Nano-composite of Co3O4 and Cu with enhanced stability and catalytic performance for non-enzymatic electrochemical glucose sensors. RSC Adv. 7, 54460–54467 (2017)

    CAS  Google Scholar 

  130. Z. Zhang, D. Vieira, J.E. Barralet, G. Merle, 2D hematene, a bioresorbable electrocatalytic support for glucose oxidation. 2D Mater. 7, 025044 (2020)

    CAS  Google Scholar 

  131. F. Xiao, Y. Li, H. Gao, S. Ge, H. Duan, Growth of coral-like PtAu–MnO2 binary nanocomposites on free-standing graphene paper for flexible nonenzymatic glucose sensors. Biosens. Bioelectron. 41, 417–423 (2013)

    CAS  Google Scholar 

  132. D. Zhang, H. Chang, P. Li, R. Liu, Q. Xue, Fabrication and characterization of an ultrasensitive humidity sensor based on metal oxide/graphene hybrid nanocomposite. Sens. Actuator B 225, 233–240 (2016)

    CAS  Google Scholar 

  133. W. Guo, B. Zhao, Q. Zhou, Y. He, Z. Wang, N. Radacsi, Fe-doped ZnO/reduced graphene oxide nanocomposite with synergic enhanced gas sensing performance for the effective detection of formaldehyde. ACS Omega 4, 10252–10262 (2019)

    CAS  Google Scholar 

  134. T. Kavinkumar, S. Manivannan, Thermal and dielectric properties of multi-walled carbon nanotube–graphene oxide composite. J. Mater. Sci.-Mater. Electron. 28, 344–353 (2017)

    CAS  Google Scholar 

  135. P. Ranjan, P. Verma, S. Agrawal, T.R. Rao, S.K. Samanta, A.D. Thakur, Inducing dye-selectivity in graphene oxide for cationic dye separation applications. Mater. Chem. Phys. 226, 350–355 (2019)

    CAS  Google Scholar 

  136. P. Ranjan, A. Kumar, J. Balakrishnan, A.D. Thakur, Graphene oxide based P–N junctions. Mater. Today 11, 830–832 (2019)

    CAS  Google Scholar 

  137. A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6, 183–191 (2007)

    CAS  Google Scholar 

  138. P. Ranjan, T.K. Sahu, R. Bhushan, S.S. Yamijala, D.J. Late, P. Kumar, A. Vinu, Freestanding borophene and its hybrids. Adv. Mater. 31, e1900353 (2019)

    Google Scholar 

  139. P. Ranjan, A. Tulika, R. Laha, J. Balakrishnan, Au concentration-dependent quenching of Raman D peak in graphene. J. Raman Spectrosc. 48, 586–591 (2017)

    CAS  Google Scholar 

  140. X. Zhao, Y.-L. Zhang, X.-X. Wang, H.-L. Shi, W.-Z. Wang, M.-S. Cao, Enhanced microwave absorption properties of NiFe2O4 nanocrystal deposited reduced graphene oxides. J. Mater. Sci.-Mater. Electron. 27, 11518–11523 (2016)

    CAS  Google Scholar 

  141. X. Yan, Y. Gu, C. Li, B. Zheng, Y. Li, T. Zhang, Z. Zhang, M. Yang, A non-enzymatic glucose sensor based on the CuS nanoflakes-reduced graphene oxide nanocomposite. Anal. Methods 10, 381–388 (2018)

    CAS  Google Scholar 

  142. R. Vivekananth, R.S. Babu, K. Prasanna, C.W. Lee, R.A. Kalaivani, Non-enzymatic glucose sensing platform using self assembled cobalt oxide/graphene nanocomposites immobilized graphite modified electrode. J. Mater. Sci.-Mater. Electron. 29, 6763–6770 (2018)

    CAS  Google Scholar 

  143. P. Ranjan, J. Balakrishnan, A.D. Thakur, Dye adsorption behavior of graphene oxide. Mater. Today 11, 833–836 (2019)

    CAS  Google Scholar 

  144. S. Yang, G. Li, G. Wang, J. Zhao, X. Gao, L. Qu, Synthesis of Mn3O4 nanoparticles/nitrogen-doped graphene hybrid composite for nonenzymatic glucose sensor. Sens. Actuators B 221, 172–178 (2015)

    CAS  Google Scholar 

  145. S. Pourbeyram, J. Abdollahpour, M. Soltanpour, Green synthesis of copper oxide nanoparticles decorated reduced graphene oxide for high sensitive detection of glucose. Mater. Sci. Eng. C 94, 850–857 (2019)

    CAS  Google Scholar 

  146. H. Liu, Y. Liu, D. Zhu, Chemical doping of graphene. J. Mater. Chem. 21, 3335–3345 (2011)

    CAS  Google Scholar 

  147. Y. Tian, Y. Liu, W.-P. Wang, X. Zhang, W. Peng, CuO nanoparticles on sulfur-doped graphene for nonenzymatic glucose sensing. Electrochim. Acta 156, 244–251 (2015)

    CAS  Google Scholar 

  148. S. Yang, G. Li, G. Wang, J. Zhao, X. Gao, L. Qu, Synthesis of Mn3O4 nanoparticles/nitrogen-doped graphene hybrid composite for nonenzymatic glucose sensor. Sens. Actuator B 221, 172–178 (2015)

    CAS  Google Scholar 

  149. C. Wu, X. Huang, G. Wang, L. Lv, G. Chen, G. Li, P. Jiang, Highly conductive nanocomposites with three-dimensional, compactly interconnected graphene networks via a self-assembly process. Adv. Funct. Mater. 23, 506–513 (2013)

    CAS  Google Scholar 

  150. K.G. Lee, J.-M. Jeong, S.J. Lee, B. Yeom, M.-K. Lee, B.G. Choi, Sonochemical-assisted synthesis of 3D graphene/nanoparticle foams and their application in supercapacitor. Ultrason. Sonochem. 22, 422–428 (2015)

    CAS  Google Scholar 

  151. Z. Khosroshahi, F. Karimzadeh, M. Kharaziha, A. Allafchian, A non-enzymatic sensor based on three-dimensional graphene foam decorated with Cu–xCu2O nanoparticles for electrochemical detection of glucose and its application in human serum. Mater. Sci. Eng. C 108, 110216 (2020)

    CAS  Google Scholar 

  152. Z. Lu, L. Wu, J. Zhang, W. Dai, G. Mo, J. Ye, Bifunctional and highly sensitive electrochemical non-enzymatic glucose and hydrogen peroxide biosensor based on NiCo2O4 nanoflowers decorated 3D nitrogen doped holey graphene hydrogel. Mater. Sci. Eng. C 102, 708–717 (2019)

    CAS  Google Scholar 

  153. M. Liu, R. Liu, W. Chen, Graphene wrapped Cu2O nanocubes: non-enzymatic electrochemical sensors for the detection of glucose and hydrogen peroxide with enhanced stability. Biosens. Bioelectron. 45, 206–212 (2013)

    CAS  Google Scholar 

  154. Y. Zhang, Y.-Q. Liu, Y. Bai, W. Chu, J. Sh, Confinement preparation of hierarchical NiO–N-doped carbon@reduced graphene oxide microspheres for high-performance non-enzymatic detection of glucose. Sens. Actuator B 309, 127779 (2020)

    CAS  Google Scholar 

  155. J.J. Gooding, Nanostructuring electrodes with carbon nanotubes: a review on electrochemistry and applications for sensing. Electrochim. Acta 50, 3049–3060 (2005)

    CAS  Google Scholar 

  156. Q. Bao, Z. Yang, Y. Song, M. Fan, P. Pan, J. Liu, Z. Liao, J. Wei, Printed flexible bifunctional electrochemical urea-pH sensor based on multiwalled carbon nanotube/polyaniline electronic ink. J. Mater. Sci.-Mater. Electron. 30, 1751–1759 (2019)

    CAS  Google Scholar 

  157. C. Batchelor-McAuley, G.G. Wildgoose, R.G. Compton, L. Shao, M.L.H. Green, Copper oxide nanoparticle impurities are responsible for the electroanalytical detection of glucose seen using multiwalled carbon nanotubes. Sens. Actuator B 132, 356–360 (2008)

    CAS  Google Scholar 

  158. N. Quoccy Dung, D. Patil, H. Jung, D. Kim, A high-performance nonenzymatic glucose sensor made of CuO–SWCNT nanocomposites. Biosens. Bioelectron. 42, 280–286 (2013)

    Google Scholar 

  159. S. Masoomi-Godarzi, A.A. Khodadadi, M. Vesali-Naseh, Y. Mortazavi, Highly stable and selective non-enzymatic glucose biosensor using carbon nanotubes decorated by Fe3O4 nanoparticles. J. Electrochem. Soc. 161, B19–B25 (2013)

    Google Scholar 

  160. C. Guo, H. Li, X. Zhang, H. Huo, C. Xu, 3D porous CNT/MnO2 composite electrode for high-performance enzymeless glucose detection and supercapacitor application. Sens. Actuator B 206, 407–414 (2015)

    CAS  Google Scholar 

  161. Y. Wang, K. Wang, C. Zhang, J. Zhu, J. Xu, T. Liu, Solvent-exchange strategy toward aqueous dispersible MoS2 nanosheets and their nitrogen-rich carbon sphere nanocomposites for efficient lithium/sodium ion storage. Small 15, 1903816 (2019)

    CAS  Google Scholar 

  162. L. Sun, T. Ma, J. Zhang, X. Guo, C. Yan, X. Liu, Double-shelled hollow carbon spheres confining tin as high-performance electrodes for lithium ion batteries. Electrochim. Acta 321, 134672 (2019)

    CAS  Google Scholar 

  163. H. Yin, J. Zhu, J. Chen, J. Gong, Q. Nie, Hierarchical CuCo2O4/C microspheres assembled with nanoparticle-stacked nanosheets for sensitive non-enzymatic glucose detection. J. Mater. Sci. 53, 11951–11961 (2018)

    CAS  Google Scholar 

  164. J. Zhang, J. Ma, S. Zhang, W. Wang, Z. Chen, A highly sensitive nonenzymatic glucose sensor based on CuO nanoparticles decorated carbon spheres. Sens. Actuator B 211, 385–391 (2015)

    CAS  Google Scholar 

  165. J. Zhu, H. Yin, J. Gong, M.S.H. Al-Furjan, Q. Nie, Easy one pot synthesis of NiO/nitrogen doped carbon spheres for highly sensitive enzyme free amperometric glucose sensors. Appl. Surf. Sci. 444, 56–64 (2018)

    CAS  Google Scholar 

  166. R. Madhuvilakku, R. Mariappan, S. Alagar, S. Piraman, Sensitive and selective non-enzymatic detection of glucose by monodispersed NiO@S-doped hollow carbon sphere hybrid nanostructures. Anal. Chim. Acta 1042, 93–108 (2018)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen Zeng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Zeng, W., Guo, Q. et al. Metal oxide-based composite for non-enzymatic glucose sensors. J Mater Sci: Mater Electron 31, 16111–16136 (2020). https://doi.org/10.1007/s10854-020-04239-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04239-0

Navigation