Skip to main content
Log in

RETRACTED ARTICLE: Experimental and theoretical investigations on the spinel structure of Co2O3 nanoparticles synthesized via simple co-precipitation method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

This article was retracted on 30 November 2022

This article has been updated

Abstract

Nanostructured Co2O3 spinel is synthesized via simple co-precipitation method. The Co2O3 materials are analytically investigated with different techniques. However, the spinel type of Co2O3 nanoparticles showed attractive features for microwave and biomedical applications. X-ray diffraction (XRD) analysis indicates the growth of good crystalline Co2O3 nanoparticles with a cubic type. Field Emission Scanning Electron Microscope (FE-SEM) images of Co2O3 nanoparticles reveal spherical particles. In general, the magnetization of spinel Co2O3 nanoparticles demonstrates ferromagnetic order at low strength of the magnetic field. All the theoretical parameters of the metal oxide composite are done by utilizing DFT/B3LYP/LANL2DZ level of theory. The enhanced bond parameters, for example, bond lengths and bond angles, are determined utilizing same level of basis set. The non-linear optical (NLO) property of the title compound is assessed utilizing first appeal hyperpolarizability count. HOMO–LUMO investigation, the charge move ensues within the molecule. Moreover, Molecular electrostatic potential (MEP) and Mulliken atomic charges are likewise determined in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Change history

References

  1. M. Benelmekki, Nanomaterials: the original product of nanotechnology (Morgan & Claypool Publishers, 2019)

    Google Scholar 

  2. S. Mourdikoudis, R.M. Pallares, N.T. Thanh, Characterization techniques for nanoparticles: comparison and complementarity upon studying nanoparticle properties. Nanoscale 10(27), 12871–12934 (2018)

    Article  CAS  Google Scholar 

  3. J. Jeevanandam, A. Barhoum, Y.S. Chan, A. Dufresne, M.K. Danquah, Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J. Nanotechnol. 9(1), 1050–1074 (2018)

    Article  CAS  Google Scholar 

  4. K.J. Klabunde, R.M. Richards, Nanoscale Materials in Chemistry (Wiley, Hoboken, 2009)

    Book  Google Scholar 

  5. M. Fernández-García, J.A. Rodriguez, Metal oxide nanoparticles. Encycl. Inorg.  Bioinorg. Chem. (2011). https://doi.org/10.1002/9781119951438.eibc0331

    Article  Google Scholar 

  6. J. Schmidt, M.R. Marques, S. Botti, M.A. Marques, Recent advances and applications of machine learning in solid-state materials science. NPJ Comput. Mater. 5(1), 1–36 (2019)

    Article  Google Scholar 

  7. P.F. García, M. Brammen, M. Wolf, S. Reinlein, M.F. Von Roman, S. Berensmeier, High-gradient magnetic separation for technical scale protein recovery using low cost magnetic nanoparticles. Sep. Purif. Technol. 150, 29–36 (2015)

    Article  Google Scholar 

  8. Y. Hou, H. Kondoh, M. Shimojo, T. Kogure, T. Ohta, High-yield preparation of uniform cobalt hydroxide and oxide nanoplatelets and their characterization. J. Phys. Chem. B 109(41), 19094–19098 (2005)

    Article  CAS  Google Scholar 

  9. X. Chang, T. Wang, P. Zhang, J. Zhang, A. Li, J. Gong, Enhanced surface reaction kinetics and charge separation of p–n heterojunction Co3O4/BiVO4 photoanodes. J. Am. Chem. Soc. 137(26), 8356–8359 (2015)

    Article  CAS  Google Scholar 

  10. A.M. Cao, J.S. Hu, H.P. Liang, W.G. Song, L.J. Wan, X.L. He, X.G. Gao, S.H. Xia, Hierarchically structured cobalt oxide (Co3O4): the morphology control and its potential in sensors. J. Phys. Chem. B 110(32), 15858–15863 (2006)

    Article  CAS  Google Scholar 

  11. J. Chen, X. Wu, A. Selloni, Electronic structure and bonding properties of cobalt oxide in the spinel structure. Phys. Rev. B 83(24), 245204 (2011)

    Article  Google Scholar 

  12. A.S. Zola, R.U. Ribeiro, J.M.C. Bueno, D. Zanchet, P.A. Arroyo, Cobalt nanoparticles prepared by three different methods. J. Exp. Nanosci. 9(4), 398–405 (2012)

    Article  Google Scholar 

  13. J. Morris, J. Willis, EPA Whitepaper on Nanotechnology, (2007)

  14. M. Salavati-Niasari, F. Davar, M. Mazaheri, M. Shaterian, Preparation of cobalt nanoparticles from [bis (salicylidene) cobalt (II)]–oleylamine complex by thermal decomposition. J. Magn. Magn. Mater. 320(3–4), 575–578 (2008)

    Article  CAS  Google Scholar 

  15. M. Mauro, M. Crosera, M. Pelin, C. Florio, F. Bellomo, G. Adami, P. Apostoli, G. De Palma, M. Bovenzi, M. Campanini, F.L. Filon, Cobalt oxide nanoparticles: behavior towards intact and impaired human skin and keratinocytes toxicity. Int. J. Environ. Res. Public Health 12(7), 8263–8280 (2015)

    Article  CAS  Google Scholar 

  16. S.L. Sharifi, H.R. Shakur, A. Mirzaei, M.H. Hosseini, Characterization of cobalt oxide Co3O4 nanoparticles prepared by various methods: effect of calcination temperatures on size, dimension and catalytic decomposition of hydrogen peroxide. Int. J. Nanosci. Nanotechnol. 9(1), 51–58 (2013)

    Google Scholar 

  17. S.M. Ansari, R.D. Bhor, K.R. Pai, D. Sen, S. Mazumder, K. Ghosh, Y.D. Kolekar, C.V. Ramana, Cobalt nanoparticles for biomedical applications: facile synthesis, physiochemical characterization, cytotoxicity behavior and biocompatibility. Appl. Surf. Sci. 414, 171–187 (2017)

    Article  CAS  Google Scholar 

  18. N. Izu, I. Matsubara, T. Uchida, T. Itoh, W. Shin, Synthesis of spherical cobalt oxide nanoparticles by a polyol method. J. Ceram. Soc. Jpn. 125(9), 701–704 (2017)

    Article  CAS  Google Scholar 

  19. S. Farhadi, M. Javanmard, G. Nadri, Characterization of cobalt oxide nanoparticles prepared by the thermal decomposition. Acta Chim. Slov. 63(2), 335–343 (2016)

    Article  CAS  Google Scholar 

  20. K. Sun, J. Wang, Y. Yang, Y. Li, Z. Yu, Z. Lan, X. Jiang, R. Guo, C. Wu, Influence of Ta2O5–Co2O3 co-doping on the magnetic property of NiMgCuZn ferrites. Physica B 476, 122–128 (2015)

    Article  CAS  Google Scholar 

  21. K.P. Latha, C. Prema, S.M. Sundar, Synthesis and characterization of cobalt oxide nanoparticles. J. Nanosci. Technol. 4(5), 475–477 (2018)

    Article  Google Scholar 

  22. Y. Guo, X. Jian, L. Zhang, C. Mu, L. Yin, J. Xie, N. Mahmood, S. Dou, R. Che, L. Deng, Plasma-induced FeSiAl@ Al2O3@ SiO2 core–shell structure for exceptional microwave absorption and anti-oxidation at high temperature. Chem. Eng. J. 384, 123371 (2020)

    Article  CAS  Google Scholar 

  23. M.J. Frisch et al., Gaussian, Inc., Pittsburgh PA, (2009)

  24. A.D. Becke, Density-functional thermochemistry. I. The effect of the exchange-only gradient correction. J. Chem. Phys. 96(3), 2155–2160 (1992)

    Article  CAS  Google Scholar 

  25. C. Lee, W. Yang, R.G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37(2), 785 (1988)

    Article  CAS  Google Scholar 

  26. P.J. Stephens, F.J. Devlin, C.F. Chabalowski, M.J. Frisch, Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J. Phys. Chem. 98(45), 11623–11627 (1994)

    Article  CAS  Google Scholar 

  27. C. Andraud, T. Brotin, C. Garcia, F. Pelle, P. Goldner, B. Bigot, A. Collet, Theoretical and experimental investigations of the nonlinear optical properties of vanillin, polyenovanillin, and bisvanillin derivatives. J. Am. Chem. Soc. 116(5), 2094–2102 (1994)

    Article  CAS  Google Scholar 

  28. M. Nakano, H. Fujita, M. Takahata, K. Yamaguchi, Theoretical study on second hyperpolarizabilities of phenylacetylene dendrimer: toward an understanding of structure—property relation in NLO responses of fractal antenna dendrimers. J. Am. Chem. Soc. 124(32), 9648–9655 (2002)

    Article  CAS  Google Scholar 

  29. V.M. Geskin, C. Lambert, J.L. Brédas, Origin of high second-and third-order nonlinear optical response in ammonio/borato diphenylpolyene zwitterions: the remarkable role of polarized aromatic groups. J. Am. Chem. Soc. 125(50), 15651–15658 (2003)

    Article  CAS  Google Scholar 

  30. N.B. Colthup, L.H. Daly, S.E. Wiberley, Introduction to Infrared to and Raman Spectroscopy (Academic Press, New York, 1990)

    Google Scholar 

  31. I. Fleming, Frontier Orbitals and Organic Chemical Reactions (Wiley , New York, 1976)

    Google Scholar 

  32. N.M. O’boyle, A.L. Tenderholt, K.M. Langner, Cclib: a library for package-independent computational chemistry algorithms. J. Comput. Chem. 29(5), 839–845 (2008)

    Article  Google Scholar 

  33. E. Scrocco, J. Tomasi, Electronic molecular structure, reactivity and intermolecular forces: an euristic interpretation by means of electrostatic molecular potentials. Adv. Quantum Chem. 11, 115–193 (1978)

    Article  CAS  Google Scholar 

  34. F.J. Luque, J.M. López, M. Orozco, Perspective on “electrostatic interactions of a solute with a continuum. A direct utilization of ab initio molecular potentials for the prevision of solvent effects.” Theoret. Chem. Acc. 103(3–4), 343–345 (2000)

    CAS  Google Scholar 

  35. N. Okulik, A.H. Jubert, Theoretical analysis of the reactive sites of non-steroidal anti-inflammatory drugs. Internet Electron. J. Mol. Design 4(1), 17–30 (2005)

    CAS  Google Scholar 

  36. R.S. Mulliken, Electronic population analysis on LCAO–MO molecular wave functions. IV. Bonding and antibonding in LCAO and valence‐bond theories. J. Chem. Phys. 23(12), 2343–2346 (1955)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Rajeevgandhi.

Ethics declarations

Conflict of interest

The authors have declared that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajeevgandhi, C., Sathiyamurthy, K., Guganathan, L. et al. RETRACTED ARTICLE: Experimental and theoretical investigations on the spinel structure of Co2O3 nanoparticles synthesized via simple co-precipitation method. J Mater Sci: Mater Electron 31, 16769–16779 (2020). https://doi.org/10.1007/s10854-020-04232-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04232-7

Navigation