Skip to main content
Log in

Spectroscopic, optical, magnetic and dielectric investigation of the orthoborate Ba2Co(BO3)2 nanopowder

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Nano-polycrystalline phase of Ba2Co(BO3)2, has been successfully obtained by the standard solid-state reaction. The Ba2Co(BO3)2 crystallizes in the monoclinic cell with the space group C2/m. The cell parameters are: a = 12.027 Å, b = 5.340 Å, c = 10.295 Å, and β = 117.228°. The average grain size determined from Debye–Scherer’s equation is 40.29 nm. The surface morphology of the studied borate is consisting of the regular-shaped particles and the SEM reveals homogenous particles of nanotubes shapes. The elemental composition is confirmed by Energy Dispersive Spectrometry (EDS). The infrared and Raman studies confirm the existence of the BO3 groups. The calculated gap energy (E = 3.57 eV for the indirect mode and E = 3.9 eV for the direct one) is reported which is typical for wide-band-gap semiconductor materials. The magnetic measurements established that the predominant interactions in this borate are antiferromagnetic. The thermal investigation of the borate studied by the differential scanning calorimetry (DSC) highlights several anomalies, which could correspond either to phase transitions or to change in the physical behavior of the material. These phenomena are observed and interpreted by means of the dielectric study at high temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. P. Pernice, S. Esposito, A. Aronne, V.N. Sigaev, Structure and crystallization behavior of glasses in the BaO–B2O3–Al2O3 system. J. Non Cryst. Solids 258(1), 1–10 (1999)

    Article  CAS  Google Scholar 

  2. H. Search, C. Journals, A. Contact, M. Iopscience, I.P. Address, Barium borate b-BaB2O4 as a material for nonlinear optics. Russ. Chem. Rev. 71, 741–763 (2002)

    Article  Google Scholar 

  3. J.C. Jourbert, T. Shirk, W.B. While, R. Roy, Stability, Infrared spectrum and magnetic proprieties. Bull. Mater. Res. 3, 671–676 (1968)

    Article  Google Scholar 

  4. R. Norrestam, S. Carlson, M. Kritikos, A. Sjodin, Synthetic, structural, and magnetic studies of strontium copper(II) borates wih the composition Sr1-xMxCu2(BO3)2, M = Ba or Ca. J. Solid State Chem. 113, 74–77 (1994)

    Article  CAS  Google Scholar 

  5. B.M. Bo et al., Vibrational spectroscopy electronic structure and Raman spectroscopy study of dibarium, Ba2Mg(BO3)2. Vib. Spectrosc. 80, 53–58 (2015)

    Article  Google Scholar 

  6. G. Chen, Y. Wu, P. Fu, Strontium magnesium borate, Sr2Mg(BO3)2. Acta Cryst. E 63(1974), 1631–1633 (2007)

    Google Scholar 

  7. S. Pan, J.P. Smit, M.R. Marvel, C.L. Stern, B. Watkins, K.R. Poeppelmeier, Synthesis, structure and properties of Pb2CuB2O6. Mater. Res. Bull. 41, 916–924 (2006)

    Article  CAS  Google Scholar 

  8. A. Akella, D.A. Keszler, Crystal structure of the borate Ba2Ca(BO3)2. Main Gr. Met. Chem. 18, 35–42 (1995)

    CAS  Google Scholar 

  9. R.W. Smith, L.J. Koliha, A new noncentrosymmetric orthoborate [Ba2Zn(BO3)2]. Mater. Res. Bull. 29(11), 1203–1210 (1994)

    Article  CAS  Google Scholar 

  10. R.W. Smith, D.A. Keszler, Syntheses and Crystal Structures of the a and b forms of the orthoborate Sr2Cu(BO3)2. J. Solid State Chem. 81, 305–313 (1989)

    Article  CAS  Google Scholar 

  11. B.C. Bo et al., Growth, crystal structure and optical properties of layered dibarium cadmium. J. Alloys Compd. 509(23), 6696–6699 (2011)

    Article  Google Scholar 

  12. F.-E. N’aoui, J. Aride, A. Boukhari, M. Taibi, L. Ammari, M. Saadi, Crystal structure of Ba2Co(BO3)2 research communications. Acta Cryst. E 75, 388–391 (2019)

    Article  Google Scholar 

  13. F.-E. N’faoui, J. Aride, A. Boukhari, M. Taibi, H. Saadaoui, M. Rouziéres, Crystal structure, spectroscopic, optical, thermal and magnetic studies of new orthoborate Sr2Co(BO3)2. J. Solid State Chem. 283, 121167 (2020)

    Article  Google Scholar 

  14. A. Bishnoi, S. Kumar, N. Joshi, Chapter 9: Wide-ANGLE X-ray Diffraction (WXRD): Technique for Characterization of Nanomaterials and Polymer Nanocomposites (Elsevier Inc, Amsterdam, 2017)

    Google Scholar 

  15. X. Lv et al., Crystal growth electronic structure and optical properties of Sr2Mg(BO3)2. J. Solid State Chem. 258, 283–288 (2018)

    Article  CAS  Google Scholar 

  16. E.A. Dobretsova, E.Y. Borovikova, K.N. Boldyrev, V.S. Kurazhkovskaya, N.I. Leonyuk, ir spectroscopy of rare earth aluminum borates RAl3(BO3)4 (R = Y, Pr – Yb ). Opt. Spectrosc. 116(1), 77–83 (2014)

    Article  CAS  Google Scholar 

  17. J. Tauc, R. Grigorovici, A. Vancu, Optical properties and electronic structure of amorphous germanium. Opt. Propr. Electron. Structue Amorph. Ger. 627, 627–637 (1966)

    Google Scholar 

  18. J. Robertson, Band offsets of wide-band-gap oxides and implications for future electronic devices. J. Vac. Sci. Technol. B 18, 1785–1790 (2000)

    Article  CAS  Google Scholar 

  19. B. Sujatha, R. Viswanatha, B.K. Chethana, H. Nagabhushana, C.N. Reddy, Electrical conductivity and dielectric relaxation studies on microwave synthesized Na2SO4NaPO3MoO3 glasses. Ionics 22(4), 563–571 (2015)

    Article  Google Scholar 

  20. M. Bouziane, M. Taibi, A. Boukhari, Phase transition and conduction mechanism in PB2Na0.8R0.2Nb4.8Fe0.2O15 material (rare earth). J. Solid State Chem. 207, 203–207 (2013)

    CAS  Google Scholar 

  21. M. Bouziane, M. Taibi, A. Boukhari, Synthesis and ferroelectric properties of rare earth compounds with tungsten bronze-type structure. Mater. Chem. Phys. 129(3), 673–677 (2011)

    CAS  Google Scholar 

  22. M. Trainer, Ferroelectrics and the Curie – Weiss law. IOP Sci. 21, 459–464 (2000)

    CAS  Google Scholar 

  23. L. Boudad, M. Taibi, A. Belayachi, M. Abd-lefdil, Structural, morphological, spectroscopic, and dielectric properties of SmFe0.5Cr0.5O3. Mater. Today Proc. 13, 646–653 (2019)

    CAS  Google Scholar 

  24. M. Shkir, I.S. Yahia, A.M.A. Al-qahtani, Bulk monocrystal growth, optical, dielectric, third order nonlinear, thermal and mechanical studies on HCl added l-alanine: an organic NLO material. Mater. Chem. Phys. 184, 1–11 (2016)

    Google Scholar 

  25. M. Petrowsky, R. Frech, Temperature dependence of ion transport: the compensated arrhenius equation. J. Phys. Chem. 113, 5996–6000 (2009)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F.-E. N’faoui.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

N’faoui, FE., Taibi, M., Aride, J. et al. Spectroscopic, optical, magnetic and dielectric investigation of the orthoborate Ba2Co(BO3)2 nanopowder. J Mater Sci: Mater Electron 31, 16678–16687 (2020). https://doi.org/10.1007/s10854-020-04222-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04222-9

Navigation