Skip to main content

Advertisement

Log in

Facile hydrothermal synthesis of 3D flower-like NiCo2O4/CeO2 composite as effective oxygen reduction reaction catalyst

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Exploiting high-performance and cost-effective non-noble metal catalysts for oxygen reduction reaction (ORR) is still greatly important for energy storage devices such as metal-air batteries and fuel cells. In this work, CeO2, NiCo2O4, and NiCo2O4/CeO2 were synthetized by facile hydrothermal method and used as an ORR catalyst. The as-prepared CeO2, NiCo2O4, and NiCo2O4/CeO2 samples were measured by XRD, XPS, SEM, and TEM. Electrochemical characterization tests exhibit that the ORR activity of NiCo2O4 is evidently enhanced by blending with CeO2 nanoparticles. The NiCo2O4/CeO2 composite exhibits more superior electrocatalytic performances and stability in alkaline solution as compared to the pure CeO2 and NiCo2O4. The electrochemical performance of composite is very near to that of 20 wt% Pt/C. Owing to the synergistic interactions, NiCo2O4/CeO2 favors a four-electron pathway in ORR and exhibits a higher ORR activity than CeO2 and NiCo2O4. The outstanding performance confirms the NiCo2O4/CeO2 composite as a promising efficient ORR catalyst in metal-air batteries and fuel cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M. Jiang, H. He, C. Huang, B. Liu, W.-J. Yi, Z.-S. Chao, α-MnO2 nanowires/graphene composites with high electrocatalytic activity for Mg-Air fuel cell. Electrochim Acta. 219, 492–501 (2016)

    CAS  Google Scholar 

  2. K. Zhou, Z. Hong, C. Xie, H. Dai, Z. Huang, Mesoporous NiCo2O4 nanosheets with enhance sodium ion storage properties. J. Alloys Compd. 651, 24–28 (2015)

    CAS  Google Scholar 

  3. M. Rauf, J.-W. Wang, P. Zhang, W. Iqbal, J. Qu, Y. Li, Non-precious nanostructured materials by electrospinning and their applications for oxygen reduction in polymer electrolyte membrane fuel cells. J. Power Sources 408, 17–27 (2018)

    CAS  Google Scholar 

  4. H. Fu, Y. Liu, L. Chen, Y. Shi, W. Kong, J. Hou, F. Yu, T. Wei, H. Wang, X. Guo, Designed formation of NiCo2O4 with different morphologies self-assembled from nanoparticles for asymmetric supercapacitors and electrocatalysts for oxygen evolution reaction. Electrochim. Acta 296, 719–729 (2019)

    CAS  Google Scholar 

  5. C. Li, Y. Ge, X. Jiang, Z. Zhang, L. Yu, The rambutan-like C@NiCo2O4 composites for enhanced microwave absorption performance. J. Mater. Sci-Mater. El. 30, 3124–3136 (2019)

    CAS  Google Scholar 

  6. J. Kong, W. Cheng, Recent advances in the rational design of electrocatalysts towards the oxygen reduction reaction. Chin. J. Catal. 38, 951–969 (2017)

    CAS  Google Scholar 

  7. S. Zhao, L. Yan, H. Luo, W. Mustain, H. Xu, Recent progress and perspectives of bifunctional oxygen reduction/evolution catalyst development for regenerative anion exchange membrane fuel cells. Nano Energy. 47, 172–198 (2018)

    CAS  Google Scholar 

  8. E. Antolini, E.R. Gonzalez, Polymer supports for low-temperature fuel cell catalysts. Appl. Catal. A 365, 1–19 (2009)

    CAS  Google Scholar 

  9. S.A. Khan, S.B. Khan, A.M. Asiri, Electro-catalyst based on cerium doped cobalt oxide for oxygen evolution reaction in electrochemical water splitting. J. Mater. Sci-Mater. El. 27, 5294–5302 (2016)

    CAS  Google Scholar 

  10. Y. Wang, D.Y.C. Leung, J. Xuan, H. Wang, A review on unitized regenerative fuel cell technologies, part B: unitized regenerative alkaline fuel cell, solid oxide fuel cell, and microfluidic fuel cell. Renew Sust. Energy Rev. 75, 775–795 (2017)

    CAS  Google Scholar 

  11. M. Gabbasa, K. Sopian, A. Fudholi, N. Asim, A review of unitized regenerative fuel cell stack: material, design and research achievements. Int. J. Hydrogen Energy 39, 17765–17778 (2014)

    CAS  Google Scholar 

  12. M.Z. Iqbal, A.-U. Rehman, S. Siddique, Recent developments in graphene based novel structures for efficient and durable fuel cells. Mater. Res. Bull. 122, 110674 (2020)

    CAS  Google Scholar 

  13. S. Peng, L. Li, J. Kong Yoong Lee, L. Tian, M. Srinivasan, S. Adams, S. Ramakrishna, Electrospun carbon nanofibers and their hybrid composites as advanced materials for energy conversion and storage. Nano Energy 22, 361–395 (2016)

    CAS  Google Scholar 

  14. S. Gao, B. Fan, R. Feng, C. Ye, X. Wei, J. Liu, X. Bu, N-doped-carbon-coated Fe3O4 from metal-organic framework as efficient electrocatalyst for ORR. Nano Energy. 40, 462–470 (2017)

    CAS  Google Scholar 

  15. J. Liu, Y. Zhu, X. Li, F. Du, R. Wang, L. Jiang, Three-dimensional Fe, N-doped carbon nanosheets on interconnected carbon skeletons as a highly efficient and stable electrocatalyst for oxygen reduction reaction. J. Alloys Compd. 788, 1274–1281 (2019)

    CAS  Google Scholar 

  16. L. Zhang, D.P. Wilkinson, Y. Liu, J. Zhang, Progress in nanostructured (Fe or Co)/N/C non-noble metal electrocatalysts for fuel cell oxygen reduction reaction. Electrochim. Acta 262, 326–336 (2018)

    CAS  Google Scholar 

  17. Y. Wang, X. Yin, H. Shen, H. Jiang, J. Yu, Y. Zhang, D. Li, W. Li, J. Li, Co3O4@g-C3N4 supported on N-doped graphene as effective electrocatalyst for oxygen reduction reaction. Int. J. Hydrogen Energy 43, 20687–20695 (2018)

    CAS  Google Scholar 

  18. R.B. Waghmode, A.P. Torane, Role of deposition time on synthesis of high-performance NiCo2O4 supercapacitors. J. Mater. Sci-Mater. El. 28, 9575–9583 (2017)

    CAS  Google Scholar 

  19. G. Gao, H.B. Wu, X.W.D. Lou, Citrate-assisted growth of NiCo2O4 nanosheets on reduced graphene oxide for highly reversible lithium storage. Adv. Energy Mater. 4, 1400422 (2014)

    Google Scholar 

  20. A. Eftekhari, B. Ramanujam, In pursuit of catalytic cathodes for lithium-oxygen batteries. J. Mater. Chem. A. 5, 7710–7731 (2017)

    CAS  Google Scholar 

  21. Y. Ni, J. Xu, H. Liu, S. Shao, Fabrication of RGO-NiCo2O4 nanorods composite from deep eutectic solvents for nonenzymatic amperometric sensing of glucose. Talanta 185, 335–343 (2018)

    CAS  Google Scholar 

  22. C. Yuan, H.B. Wu, Y. Xie, X.W.D. Lou, Mixed transition-metal oxides: design, synthesis, and energy-related applications. Angew. Chem. Int. Ed. 53, 1488–1504 (2014)

    CAS  Google Scholar 

  23. B. Xue, K. Li, L. Feng, J. Lu, L. Zhang, Graphene wrapped porous Co3O4/NiCo2O4 double-shelled nanocages with enhanced electrocatalytic performance for glucose sensor. Electrochim. Acta 239, 36–44 (2017)

    CAS  Google Scholar 

  24. X. Zhang, Z. Zhang, S. Sun, Q. Sun, X. Liu, Hierarchical 3D NiFe2O4@MnO2 core-shell nanosheet arrays on Ni foam for high-performance asymmetric supercapacitors. Dalton Trans. 47, 2266–2273 (2018)

    CAS  Google Scholar 

  25. Z. Zhang, Y. Huang, J. Yan, C. Li, X. Chen, Y. Zhu, A facile synthesis of 3D flower-like NiCo2O4@MnO2 composites as an anode material for Li-ion batteries. Appl. Surf. Sci. 473, 266–274 (2019)

    CAS  Google Scholar 

  26. B. Xue, K. Li, S. Gu, L. Zhang, J. Lu, Ni foam-supported ZnO nanowires and Co3O4/NiCo2O4 double-shelled nanocages for efficient hydrogen peroxide detection. Sens. Actuators B 262, 828–836 (2018)

    CAS  Google Scholar 

  27. L. Sun, L. Zhou, C. Yang, Y. Yuan, CeO2 nanoparticle-decorated reduced graphene oxide as an efficient bifunctional electrocatalyst for oxygen reduction and evolution reactions. Int. J. Hydrogen Energy 42, 15140–15148 (2017)

    CAS  Google Scholar 

  28. H. Wang, Y. Xue, B. Zhu, J. Yang, L. Wang, X. Tan, Z. Wang, Y. Chu, CeO2 nanowires stretch-embedded in reduced graphite oxide nanocomposite support for Pt nanoparticles as potential electrocatalyst for methanol oxidation reaction. Int. J. Hydrogen Energy 42, 20549–20559 (2017)

    CAS  Google Scholar 

  29. W. Wang, Y. Dong, Y. Yang, D. Chai, Y. Kang, Z. Lei, CeO2 overlapped with nitrogen-doped carbon layer anchoring Pt nanoparticles as an efficient electrocatalyst towards oxygen reduction reaction. Int. J. Hydrogen Energy. 43, 12119–12128 (2018)

    CAS  Google Scholar 

  30. F. Xu, D. Wang, B. Sa, Y. Yu, S. Mu, One-pot synthesis of Pt/CeO2/C catalyst for improving the ORR activity and durability of PEMFC. Int. J. Hydrogen Energy 42, 13011–13019 (2017)

    CAS  Google Scholar 

  31. Z. Sun, X. Cao, I.G. GonzalezMartinez, M.H. Rümmeli, R. Yang, Enhanced electrocatalytic activity of FeCo2O4 interfacing with CeO2 for oxygen reduction and evolution reactions. Electrochem. Commun. 93, 35–38 (2018)

    Google Scholar 

  32. J. Chen, N. Zhou, H. Wang, Z. Peng, H. Li, Y. Tang, K. Liu, Synergistically enhanced oxygen reduction activity of MnO(x)-CeO2/Ketjenblack composites. Chem. Commun. 51, 10123–10126 (2015)

    CAS  Google Scholar 

  33. A. Sivanantham, P. Ganesan, S. Shanmugam, A synergistic effect of Co and CeO2 in nitrogen-doped carbon nanostructure for the enhanced oxygen electrode activity and stability. Appl. Catal. B 237, 1148–1159 (2018)

    CAS  Google Scholar 

  34. X. Li, Z. Liu, L. Song, D. Wang, Z. Zhang, Three-dimensional graphene network supported ultrathin CeO2 nanoflakes for oxygen reduction reaction and rechargeable metal-air batteries. Electrochim. Acta 263, 561–569 (2018)

    CAS  Google Scholar 

  35. S. Wang, S. Sun, S. Li, F. Gong, Y. Li, Q. Wu, P. Song, S. Fang, P. Wang, Time and temperature dependent multiple hierarchical NiCo2O4 for high-performance supercapacitors. Dalton Trans. 45, 7469–7475 (2016)

    CAS  Google Scholar 

  36. K. Liu, X. Huang, H. Wang, F. Li, Y. Tang, J. Li, M. Shao, Co3O4-CeO2/C as a highly active electrocatalyst for oxygen reduction reaction in Al-air batteries. ACS Appl. Mater. Interface 8, 34422–34430 (2016)

    CAS  Google Scholar 

  37. H. Zhang, J. Gu, J. Tong, Y. Hu, B. Guan, B. Hu, J. Zhao, C. Wang, Hierarchical porous MnO2/CeO 2 with high performance for supercapacitor electrodes. Chem. Eng. J. 286, 139–149 (2016)

    CAS  Google Scholar 

  38. M. Zhang, Y. Chen, C. Qiu, X. Fan, C. Chen, Z. Wang, Synthesis and atomic-scale characterization of CeO2 nano-octahedrons. Physica E 64, 218–223 (2014)

    CAS  Google Scholar 

  39. S. Xu, Y. Kim, D. Higgins, M. Yusuf, T.F. Jaramillo, F.B. Prinz, Building upon the Koutecky-Levich equation for evaluation of next-generation oxygen reduction reaction catalysts. Electrochim. Acta 255, 99–108 (2017)

    CAS  Google Scholar 

  40. M.R. Majidi, F. Shahbazi Farahani, M. Hosseini, I. Ahadzadeh, Low-cost nanowired alpha-MnO2/C as an ORR catalyst in air-cathode microbial fuel cell. Bioelectrochemistry 125, 38–45 (2019)

    CAS  Google Scholar 

  41. Y. Xue, H. Huang, H. Miao, S. Sun, Q. Wang, S. Li, Z. Liu, One-pot synthesis of La0.7Sr0.3MnO3 supported on flower-like CeO2 as electrocatalyst for oxygen reduction reaction in aluminum-air batteries. J. Power Sources 358, 50–60 (2017)

    CAS  Google Scholar 

  42. F. Xu, K. Cheng, Y. Yu, S. Mu, One-pot synthesis of Pt/CeO2/C catalyst for enhancing the SO2 electrooxidation. Electrochim. Acta 229, 253–260 (2017)

    CAS  Google Scholar 

  43. J. Yang, J. Wang, S. Ma, B. Ke, L. Yu, W. Zen, Y. Li, J. Wang, Insight into the effect of crystalline structure on the oxygen reduction reaction activities of one-dimensional MnO2. Physica E. 109, 191–197 (2019)

    CAS  Google Scholar 

  44. C. Jin, F. Lu, X. Cao, Z. Yang, R. Yang, Facile synthesis and excellent electrochemical properties of NiCo2O4 spinel nanowire arrays as a bifunctional catalyst for the oxygen reduction and evolution reaction. J. Mater. Chem. A. 39, 12170–12177 (2013)

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support provided by the Fundamental Research Funds for the Central Universities (Nos. 2018CDGFCL0005 and 2019CDYGYB018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinxing Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Dong, X., Yang, J. et al. Facile hydrothermal synthesis of 3D flower-like NiCo2O4/CeO2 composite as effective oxygen reduction reaction catalyst. J Mater Sci: Mater Electron 31, 16600–16608 (2020). https://doi.org/10.1007/s10854-020-04215-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04215-8

Navigation