Skip to main content
Log in

Effect of Cu2+ doping on the structural, optical, and vapor-sensing properties of ZnO thin films prepared by SILAR method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The Cu-doped ZnO thin films were fabricated on glass slides by a two-step SILAR coating method. The diffraction data revealed that the prepared ZnO:Cu films were in the phase of Wurtzite geometry, and the grain size decreases from 37 to 26 nm. The morphological studies revealed uniform distribution of nanograins as well as a nanoflower structure. The doping samples exhibited an increase in transmittance and an increase in the bandgap. A room temperature ammonia vapor-sensing performance of Cu-doped ZnO films is also studied, and sensitivity for sensing ammonia vapor is increased with doping concentration. The sensitivity was remarkably enhanced to 12,300% and it has a relatively fast response/recovery time of 37/8 s for 100 ppm NH3 for the 5 wt% of ZnO:Cu film. Its high sensitivity and fast response make the ZnO:Cu film a good contender for high-quality gas sensor devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. U.B.Tumberphale, S.S. Jadhav, S.D. Raut, P.V. Shinde, S. Sangle, S.F. Shaikh, A. M. Al-Enizi, M. Ubaidullah, R.S. Mane, S.K. Gore, Tailoring ammonia gas sensing performance of La3+-doped copper cadmium ferrite nanostructures. Solid State Sci. 100, 106089 (2019)

    Google Scholar 

  2. K. Ravichandran, A.J. Santhosam, M. Sridharan, Effect of tungsten doping on the ammonia vapour sensing ability of ZnO thin films prepared by a cost effective simplified spray technique. Surf. Interfaces 18, 100412 (2019)

    Google Scholar 

  3. Y. Gong, X. Wu, J. Chen, W. Li, N. Han, D. Zhang, Y. Chen, Enhanced gas-sensing performance of metal@ZnO core–shell nanoparticles towards ppb–ppm level benzene: the role of metal–ZnO hetero-interfaces. New J. Chem. 43, 2220–2230 (2019)

    CAS  Google Scholar 

  4. F.Y. Mo, S. Shi, P. Qin, Y. Tang, Y. Feng, Y. Zhao, D. Li, Facile fabrication of mesoporous hierarchical Co-doped ZnO for highly sensitive ethanol detection. Ind. Eng. Chem. Res. 58, 8061–8071 (2019)

    CAS  Google Scholar 

  5. Z. Pan, F. Sun, X. Zhu, Z. Chen, X. Lin, Y. Zheng, W. Zhong, Z. Zhuang, F. Gu, Electrodeposition-based in situ construction of a ZnO-ordered macroporous film gas sensor with enhanced sensitivity. J. Mater. Chem. A 7, 1287–1299 (2019)

    CAS  Google Scholar 

  6. G. Li, H. Zhang, L. Meng, Z. Sun, Z. Chen, X. Huang, Y. Qin, Adjustment of oxygen vacancy states in ZnO and its application in ppb-level NO2 gas sensor. Sci. Bull. 47, 2095–9273 (2020)

    Google Scholar 

  7. O. Alev, N. Sarıca, O. Özdemir, L.Ç Arslan, S. Büyükköse, Z.Z. Öztürk, Cu-doped ZnO nanorods based QCM sensor for hazardous gases. J. Alloys Compd. 826, 154177 (2020)

    CAS  Google Scholar 

  8. J. Chao, Y. Chen, S. Xing, D. Zhang, W. Shen, Facile fabrication of ZnO/C nanoporous fibers and ZnO hollow spheres for high performance gas sensor. Sens. Actuators B 298, 126927 (2019)

    CAS  Google Scholar 

  9. S.K. Singh, D. Dutta, S. Das, A. Dhar, M.C. Paul, Synthetic and structural investigation of ZnO nano-rods, hydrothermally grown over Au coated optical fiber for evanescent field-based detection of aqueous ammonia. Mater. Sci. Semicond. Process. 107, 104819 (2020)

    CAS  Google Scholar 

  10. F. Paraguay, M. Miki-Yoshida, J. Morales, J. Solis, W. Estrada, Influence of Al, In, Cu, Fe, and Sn dopants on the response of thin film ZnO gas sensor to ethanol. Thin Solid Films 373, 137–140 (2000)

    Google Scholar 

  11. Z.B. Bahsi, A.Y. Oral, Effects of Mn and Cu doping on the microstructures and optical properties of sol–gel derived ZnO thin films. Opt. Mater. 29, 672–678 (2007)

    Google Scholar 

  12. N.H. Al-Hardan, M.J. Abdullah, A.A. Aziz, The gas response enhancement from ZnO film for H2 gasdetection. Appl. Surf. Sci. 255, 7794–7797 (2009)

    CAS  Google Scholar 

  13. T. Corlu, I. Karaduman, S. Galioglu, B. Akata, M.A. Yıldırım, A. Ates, S. Acar, Low level no gas sensing properties of Cu doped Zno thin films prepared by Silar method. Mater. Lett. 212, 292–295 (2017)

    Google Scholar 

  14. R. Sankar Ganesh, E. Durgadevi, M. Navaneethan, V.L. Patil, S. Ponnusamy, C. Muthamizhchelvan, S. Kawasaki, P.S. Patil, Y. Hayakawa, Tuning the selectivity of NH 3 gas sensing response using Cu-doped ZnO nanostructures. Sens. Actuators A 269, 331–341 (2017)

    Google Scholar 

  15. M. Zhao, X. Wang, L. Ning, J. Jia, X. Li, L. Cao, Electrospun Cu-doped ZnO nanofibers for H2S sensing. Sens. Actuators B 156, 588–592 (2011)

    CAS  Google Scholar 

  16. V.L. Patil, S.A. Vanalakar, N.L. Tarwal, A.P. Patil, T.D. Dongale, J.H. Kim, P.S. Patil, Construction of Cu doped ZnO nanorods by chemical method for Lowtemperature detection of NO2 gas. Sens. Actuators A 299, 111611 (2019)

    CAS  Google Scholar 

  17. K.G. Girija, K. Somasundaram, A. Topkar, R.K. Vatsa, Highly selective H2S gas sensor based on Cu-doped ZnO nanocrystalline films deposited by RF magnetron sputtering of powder target. J. Alloys Compd. 684, 15–20 (2016)

    CAS  Google Scholar 

  18. J.Q. Xu, Q.Y. Pan, Y.A. Shun, Z.Z. Tian, Grain size control and gas sensing properties of ZnO gas sensor. Sens. Actuators B 66, 277–279 (2000)

    CAS  Google Scholar 

  19. K. Wetchakuna, T. Samerjaia, N. Tamaekonga, C. Liewhirana, C. Siriwonga, V. Kruefua, A. Wisitsoraatb, A. Tuantranontb, S. Phanichphanta, Semiconducting metal oxides as sensors for environmentally hazardous gases. Sens. Actuators B 160, 580–591 (2011)

    Google Scholar 

  20. K.D. Kumar, S. Valanarasu, J.S. Ponraj, B.J. Fernandes, M. Shkir, S. AlFaify, P. Murahari, K. Ramesh, Effect of Er doping on the ammonia sensing properties of ZnO thin films prepared by a nebulizer spray technique. J. Phys. Chem. Solids 144, 109513 (2020)

    Google Scholar 

  21. Zhou Linsheng, Yueying JihaoBai, Fengmin Liu, H. Liu, H. Wang, Y. Zhang, G. Lu, Highly sensitive C2H2 gas sensor based on Ag modified ZnO nanorods. Ceram. Int. 46, 15764–15771 (2020)

    Google Scholar 

  22. U.T. Nakate, R. Ahmad, P. Patil, Y. Wang, K.S. Bhat, T. Mahmoudi, Y.T. Yu, E.K. Suh, Y.B. Hahn, Improved selectivity and low concentration hydrogen gas sensor application of Pd sensitized heterojunction n-ZnO/p-NiO nanostructures. J. Alloys Compd. 797, 456–464 (2019)

    CAS  Google Scholar 

  23. S. Ishak, S. Johari, M.M. Ramli, Sn doped ZnO thin film for formaldehyde detection. AIP Conf. Proc. 2203, 020027 (2020)

    CAS  Google Scholar 

  24. K.R. Devi, G. Selvan, M. Karunakaran et al., SILAR-coated Mg-doped ZnO thin films for ammonia vapor sensing applications. J. Mater. Sci. (2020). https://doi.org/10.1007/s10854-020-03564-8

    Article  Google Scholar 

  25. K. Radhidevi, G. Selvan, M. Karunakaran, G.R. Kanna, S. Maheswari, Roll of solution concentration on ZnO thin films prepared by SILAR method. J. Appl. Chem. Sci. Int. 7, 25–302016 (2016)

    Google Scholar 

  26. S. Vallejos, N. Pizúrová, I. Gràcia, C. Sotelo-Vazquez, J. Čechal, C. Blackman, I. Parkin, C. Cané, ZnO rods with exposedfacets grown via a self-catalyzed vapor-solid mechanism and their photocatalytic and gas sensing properties. ACS Appl. Mater. Interfaces 8, 33335–33342 (2016)

    CAS  Google Scholar 

  27. Y. Andolsi, F. Chaabouni, Optoelectronic properties of Cr doped ZnO thin films deposited by RF magnetron sputtering using a powder target. J. Alloys Compd. 818, 152739 (2019)

    Google Scholar 

  28. K.R. Devi, G. Selvan, M. Karunakaran, I.L. Raj, V. Ganesh, S. AlFaify, Enhanced room temperature ammonia gas sensing properties of strontium doped ZnO thin films by cost-effective SILAR method. Mater. Sci. Semicond. Process. 119, 105117 (2020)

    Google Scholar 

  29. S.P. Bharath, K.V. Bangera, G.K. Shivakumar, Enhanced gas sensing properties of indium doped ZnO thin films. Superlattices Microstruct. 124, 72–78 (2018)

    CAS  Google Scholar 

  30. U. Chaitra, A.V. Muhammed Ali, A.E. Viegas, D. Kekuda, M. Rao, Growth and characterization of undoped and aluminium doped zinc oxide thin films for SO2 gas sensing below threshold value limit. Appl. Surf. Sci. 496, 143724 (2019)

    CAS  Google Scholar 

  31. I.L. Raj, A.J. Christy, R.D. Prabu, N. Chidhambaram, M. Shki, A. Khan, S. AlFaify, Significance of Ni doping on structure-morphology-photoluminescence, optical and photocatalytic activity of CBD grown ZnO nanowires for opto-photocatalyst applications. Inorg. Chem. Commun. 119, 108082 (2020)

    Google Scholar 

  32. P. Bharathi, M. Krishna Mohan, V. Shalini, S. Harish, M. Navaneethan, J. Archana, M.G. Kumar, P. Dhivya, S. Ponnusamy, M. Shimomura, Hayakawa, growth and influence of Gd doping on ZnO nanostructures for enhanced optical, structural properties and gas sensing applications. Appl. Surf. Sci. 499, 143857 (2020)

    CAS  Google Scholar 

  33. K. Khojier, Preparation and investigation of Al-doped ZnO thin films as a formaldehyde sensor with extremely low detection limit and considering the effect of RH. Mater. Sci. Semicond. Process. 121, 105283 (2021)

    CAS  Google Scholar 

  34. S. Valanarasu, V. Dhanasekaran, M. Karunakaran, R. Chandramohan, T. Mahalingam, Role of solution pH on the microstructural properties of spin coated cobalt oxide thin films. J. Nanosci. Nanotechnol. 13, 1–6 (2013)

    Google Scholar 

  35. A. JesuJebathew, M. Karunakaran, K.D. Kumar, S. Valanarasu, V. Ganesh, M. Shkir, I.S. Yahia, H.Y. Zahran, A. Kathalingam, An effect of Gd3+ doping on core properties of ZnS thin films prepared by nebulizer spray pyrolysis (NSP) method. Physica B 574, 411674 (2019)

    Google Scholar 

  36. L.B. Chandrasekar, R. Chandramohan, S. Chandrasekaran, J. Thirumalai, R. Vijayalakshmi, Luminescence and unit cell analysis of Zn1–x Cd x O nanoparticles. Adv. Sci. Focus 1, 292–296 (2013)

    Google Scholar 

  37. X.D. Gao, X.M. Li, W.D. Yu, Synthesis and optical properties of ZnO nanocluster porous films depositedby modified SILAR method. Appl. Surf. Sci. 229, 275–281 (2004)

    CAS  Google Scholar 

  38. S. Chakraborty, A.K. Kole, P. Kumbhakar, Room temperature chemical synthesis of flower-like ZnO nanostructures. Mater. Lett. 67, 362–364 (2012)

    CAS  Google Scholar 

  39. C.C. Vidyasagar, G. Hosamani, P. Kariyajjanavar, R.O. Yathisha, Y.A. Nayaka, One-pot microwave synthesis and effect of Cu2 + ions on structural properties of Cu-ZnO nano crystals. Mater. Today 5, 22171–22180 (2018)

    CAS  Google Scholar 

  40. R.C. Pawar, J.S. Shaikh, S.S. Suryavanshi, P.S. Patil, Growth of ZnO nanodisk, nanospindles and nanoflowers for gas sensor: pH dependency. Curr. Appl. Phys. 12, 778e783 (2012)

    Google Scholar 

  41. D. Sahu, N.R. Panda, B.S. Acharya, A.K. Panda, Microstructural and optical investigations on sonochemically synthesized Cu doped ZnO nanobricks. Ceram. Int. 40, 11041–11049 (2014)

    CAS  Google Scholar 

  42. B. Yinzhen Wang, Chu, Structural and optical properties of ZnO thin films on (111) CaF2 substrates grown by magnetron sputtering. Superlattices Microstruct. 44, 54–61 (2008)

    Google Scholar 

  43. X. Zhou, A. Wang, Y. Wang, L. Bian, Z. Yang, Y. Bian, Y. Gong, X. Wu, N. Han, Y. Chen, Crystal defect dependent gas sensing mechanism of the single ZnO nanowire sensors. ACS Sens. 3, 2385–2393 (2018)

    CAS  Google Scholar 

  44. G.K. Mani, J.B. Rayappan, Influence of copper doping on structural, optical and sensing properties of spray deposited zinc oxide thin films. J. Alloys Compd. 582, 414–419 (2014)

    CAS  Google Scholar 

  45. M. Suchea, S. Christoulakis, K. Moschovis, N. Katsarakis, G. Kiriakidis, ZnO transparent thin films for gas sensor applications. Thin Solid Films 515, 551–554 (2006)

    CAS  Google Scholar 

  46. D. Ponnusamy, S. Madanagurusamy, Nanostructured ZnO films for room temperature ammonia sensing. J. Electron. Mater 43, 3211–3216 (2014)

    Google Scholar 

  47. V.G. Krishnan, Influence of Ba doping concentration on the physical properties and gas sensing performance of ZnO nanocrystalline films: automated nebulizer spray pyrolysis (ANSP) method. Optik 141, 83–89 (2017)

    Google Scholar 

  48. K. Shingange, Z.P. Tshabalala, O.M. Ntwaeaborwa, D.E. Motaung, G.H. Mhlongo, Highly selective NH3 gas sensor based on Au loaded ZnO nanostructures prepared using microwave-assisted method. J. Colloid Interface Sci. 479, 127–138 (2016)

    CAS  Google Scholar 

  49. G.K. Mani, J.B. Rayappan, Selective detection of ammonia using spray pyrolysis deposited pureand nickel doped ZnO thin films. Appl. Surf. Sci. 311, 405–412 (2014)

    CAS  Google Scholar 

  50. K. Ravichandran, A. Manivasaham, K. Subha, A. Chandrabose, R. Mariappan, Cost-effective nebulizersprayed ZnO thin films for enhanced ammonia gas sensing –Effect of deposition temperature. Surf. Interfaces 3, 13–20 (2016)

    Google Scholar 

  51. Y.-H. Zhang, Y.-L. Li, F.-L. Gong, K.-F. Xie, M. Liu, H.-L. Zhang, Al doped narcissus-like ZnO for enhanced NO2 sensing performance: an experimental and DFT investigation. Sens. Actuators B 305, 127489 (2019)

    Google Scholar 

  52. A. Tombak, Y.S. Ocak, F. Bayansal, Cu/SnO2 gas sensor fabricated by ultrasonic spray pyrolysis for effective detection of carbon monoxide. Appl. Surf. Sci. 493, 1075–1082 (2019)

    CAS  Google Scholar 

  53. P.S. Shewale, K.S. Yun, Synthesis and characterization of Cu-doped ZnO/RGO nanocomposites for room-temperature H2S gas sensor. J. Alloys Compd. 837, 155527 (2020)

    CAS  Google Scholar 

  54. L. Zhou, J. B, Y. Liu, F. Liu, Y. Zhang, G. Lu, Highly sensitive C2H2 gas sensor based on Ag modified ZnO nanorods. Ceram. Int. 46, 15764–15771 (2020)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors express their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through research groups program under Grant Number R.G.P.2/84/41.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to G. Selvan or V. Ganesh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Devi, K.R., Selvan, G., Hari Prasad, K. et al. Effect of Cu2+ doping on the structural, optical, and vapor-sensing properties of ZnO thin films prepared by SILAR method. J Mater Sci: Mater Electron 31, 16548–16560 (2020). https://doi.org/10.1007/s10854-020-04210-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04210-z

Navigation