Skip to main content
Log in

Zinc oxide nanostructure-based textile pressure sensor for wearable applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Wearable textile pressure sensors with piezoelectric properties are a very effective way of detecting movements of the human body based on the force exerted by the sensor. Owing to the merits of flexibility and breathability, the textile pressure sensor finds potential application in biomedical monitoring and human-machine interaction. The textile pressure sensor works on the principle of piezoelectricity where an electrode of conductive woven fabric forms the outer layer and a semi-conductive material such as ZnO is sandwiched between two conductive layers. ZnO is prepared using a simple hydrothermal method and SEM, XRD are two effective methods to detect the presence of ZnO on the conductive fabric. The pressure applied on the fabric is translated into voltage and the output voltages are compared using two samples of ZnO nanostructures. The effect of the seed layer is investigated under identical growth and measurement which influences the output performance of voltage. This property can be used to change the sensitivity and working range of pressure sensor for specific applications. The pressure sensor designed can be sewn directly onto the clothing which conforms to the human body’s flexible curved surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. F. Xu, X. Li, Y. Shi, L. Li, W. Wang, L. He, R. Liu, Micromachines 9, 1 (2018)

    Google Scholar 

  2. K. Elgeneidy, G. Neumann, M. Jackson, N. Lohse, Front. Robot. AI 5, 1 (2018)

    Google Scholar 

  3. Z. Zhou, Y. Li, J. Cheng, S. Chen, R. Hu, X. Yan, X. Liao, C. Xu, J. Yu, L. Li, J. Mater. Chem. C 6, 13120 (2018)

    CAS  Google Scholar 

  4. J. Zhang, Y. Cao, M. Qiao, L. Ai, K. Sun, Q. Mi, S. Zang, Y. Zuo, X. Yuan, Q. Wang, Sen. Actuators A274, 132 (2018)

    CAS  Google Scholar 

  5. M. Salim, D. Salim, D. Chandran, H.S. Aljibori, A.S. Kherbeet, J. Intell. Mater. Syst. Struct. 29, 2105 (2018)

    CAS  Google Scholar 

  6. M. Liu, X. Pu, C. Jiang, T. Liu, X. Huang, L. Chen, C. Du, J. Sun, W. Hu, Z.L. Wang, Adv. Mater. 29, 1 (2017)

    Google Scholar 

  7. F. Xu, X. Li, Y. Shi, L. Li, W. Wang, L. He, R. Liu, Micromachines 9, (2018)

  8. Y. Huang, X. Fan, S.-C. Chen, N. Zhao, Adv. Funct. Mater. 29, 1808509 (2019)

    Google Scholar 

  9. M. Altaf, B. Rehman, A. Rehman, N.I. Sonil, S. Atiq, S. Riaz, S. Naseem, Z. Ullah, J. Mater. Sci. Mater. Electron. (2020)

  10. Y. Kim, H. Wang, N. Dartmouth, N. Dartmouth, Handbook of Smart Textiles, vol 1 (Springer, Singapore, 2014)

  11. M. Hämmerle, L. Pagel, Proc. IEEE Int. Conf. Ind. Technol. 1553 (2010)

  12. M. Akiyama, Y. Morofuji, T. Kamohara, K. Nishikubo, M. Tsubai, O. Fukuda, N. Ueno, J. Appl. Phys. 100, (2006)

  13. M.I.M. Esfahani, M.A. Nussbaum, Sensors (Switzerland) 18, (2018)

  14. J. Kim, M. Lee, H.J. Shim, R. Ghaffari, H.R. Cho, D. Son, Y.H. Jung, M. Soh, C. Choi, S. Jung, K. Chu, D. Jeon, S.T. Lee, J.H. Kim, S.H. Choi, T. Hyeon, D.H. Kim, Nat. Commun. 5, 5747 (2014)

  15. S.C.B. Mannsfeld, B.C.-K. Tee, R.M. Stoltenberg, C.V.H.-H. Chen, S. Barman, B.V.O. Muir, A.N. Sokolov, C. Reese, Z. Bao, Nat. Mater. 9, 859 (2010)

    CAS  Google Scholar 

  16. M. Kaltenbrunner, T. Sekitani, J. Reeder, T. Yokota, K. Kuribara, T. Tokuhara, M. Drack, R. Schwödiauer, I. Graz, S. Bauer-Gogonea, S. Bauer, T. Someya, Nature 499, 458 (2013)

    CAS  Google Scholar 

  17. G. Schwartz, B.C.-K. Tee, J. Mei, A.L. Appleton, D.H. Kim, H. Wang, Z. Bao, Nat. Commun. 4, 1859 (2013)

    Google Scholar 

  18. J.Y. Sun, C. Keplinger, G.M. Whitesides, Z. Suo, Adv. Mater. 26, 7608 (2014)

    CAS  Google Scholar 

  19. J. Park, D. Kim, A.Y. Choi, Y.T. Kim, APL Mater. 6, 101106 (2018)

  20. O. Atalay, A. Atalay, J. Gafford, C. Walsh, Adv. Mater. Technol. 3, (2018)

  21. V. Mohammadi, S. Mohammadi, F. Barghi, Piezoelectric Mater. Devices - Pract. Appl. (2013)

  22. A.S. Krajewski, K. Magniez, R.J.N. Helmer, V. Schrank, IEEE Sens. J. 13, 4743 (2013)

    Google Scholar 

  23. L. Capineri, Procedia Eng. 87, 724 (2014)

    Google Scholar 

  24. K.H. Kim, S.K. Hong, N.S. Jang, S.H. Ha, H.W. Lee, J.M. Kim, ACS Appl. Mater. Interfaces 9, 17499 (2017)

    CAS  Google Scholar 

  25. J. Gao, D. Xue, W. Liu, C. Zhou, X. Ren, Actuators 6, 24 (2017)

  26. L. Persano, C. Dagdeviren, Y. Su, Y. Zhang, S. Girardo, D. Pisignano, Y. Huang, J.A. Rogers, Nat. Commun. 4, 1610 (2013)

    Google Scholar 

  27. Z. Chen, Z. Wang, X. Li, Y. Lin, N. Luo, M. Long, N. Zhao, J.Bin Xu, ACS Nano 11, 4507 (2017)

    CAS  Google Scholar 

  28. H. Çolak, E. Karaköse, Y. Deri̇n, R. Dertli̇, J. Mater. Sci. Mater. Electron. 31, 9753–9772 (2020)

    Google Scholar 

  29. B. Santoshkumar, S. Kalyanaraman, R. Vettumperumal, R. Thangavel, I.V. Kityk, S. Velumani, J. Alloys Compd. 658, 435 (2016)

    CAS  Google Scholar 

  30. R. Singh, M. Kumar, S. Chandra, J. Mater. Sci. 42, 4675 (2007)

    CAS  Google Scholar 

  31. Q. Nguyen, B.H. Kim, J.W. Kwon, J. Microelectromech. Syst. 24, 519 (2015)

    CAS  Google Scholar 

  32. M. Wang, M. Zhang, L. Pang, C. Yang, Y. Zhang, J. Hu, G. Wu, J. Colloid Interface Sci. 537, 91 (2019)

    CAS  Google Scholar 

  33. X. Li, Y. Chen, A. Kumar, A. Mahmoud, J.A. Nychka, H.J. Chung, ACS Appl. Mater. Interfaces 7, 20753 (2015)

    CAS  Google Scholar 

  34. E.S. Nour, A. Khan, O. Nur, M. Willander, Nanomater. Nanotechnol. 4, 1 (2014)

    Google Scholar 

  35. A. Khan, M. Ali Abbasi, M. Hussain, Z. Hussain Ibupoto, J. Wissting, O. Nur, M. Willander, Appl. Phys. Lett. 101(19), 193506 (2012)

    Google Scholar 

  36. J.N. Hasnidawani, H.N. Azlina, H. Norita, N.N. Bonnia, S. Ratim, E.S. Ali, Procedia Chem. 19, 211 (2016)

    CAS  Google Scholar 

  37. A.-J. Cheng, Y. Tzeng, Y. Zhou, M. Park, T. Wu, C. Shannon, D. Wang, W. Lee, Appl. Phys. Lett. 92, 92113 (2008)

    Google Scholar 

  38. D.B. Bharti, A.V. Bharati, Luminescence 32, 317 (2017)

    CAS  Google Scholar 

  39. F.F. Oliveira, M.P. Proenca, J.P. Araújo, J. Ventura, J. Mater. Sci. 51, 5589 (2016)

    CAS  Google Scholar 

  40. S. Xu, Z.L. Wang, Nano Res. 4, 1013 (2011)

    CAS  Google Scholar 

  41. G. Amin, M.H. Asif, A. Zainelabdin, S. Zaman, O. Nur, M. Willander, J. Nanomater. 2011, 269692 (2011)

    Google Scholar 

  42. M.N.R. Ashfold, R.P. Doherty, N.G. Ndifor-Angwafor, D.J. Riley, Y. Sun, Thin Solid Films 515, 8679 (2007)

    CAS  Google Scholar 

  43. D. Smazna, J. Rodrigues, S. Shree, V. Postica, G. Neubüser, A.F. Martins, N. Ben Sedrine, N.K. Jena, L. Siebert, F. Schütt, O. Lupan, R. Ahuja, M.R. Correia, T. Monteiro, L. Kienle, Y. Yang, R. Adelung, Y.K. Mishra, Nanoscale 10, 10050 (2018)

    CAS  Google Scholar 

  44. J.H. Pöhls, F. Schütt, C. O’Neill, S. Shree, M.B. Johnson, Y.K. Mishra, R. Adelung, M.A. White, Carbon (N. Y.) 144, 423 (2019)

    Google Scholar 

  45. A. Khan, M. Hussain, O. Nur, M. Willander, J. Phys. D. Appl. Phys. 47, 345102 (2014)

  46. P.P. Kapupara, S.P. Dholakia, V.P. Patel, B.N. Suhagia, J. Chem. Pharm. Res. 3, 287 (2011)

    Google Scholar 

  47. T. Narushima, H. Tsukamoto, T. Yonezawa, AIP Adv. 2, 042113 (2012)

    Google Scholar 

  48. M. Saitou, Int. J. Electrochem. Sci. 9, 6033 (2014)

    Google Scholar 

  49. M. Kashif, U. Hashim, M.E. Ali, S.M. Usman Ali, M. Rusop, Z.H. Ibupoto, M. Willander, J. Nanomater. (2012). https://doi.org/10.1155/2012/452407

    Article  Google Scholar 

  50. M.I. Zakirov, M.P. Semen’ko, O.A. Korotchenkov, J. Nanoelectron. Phys. 10(5), 05023 (2018)

    Google Scholar 

  51. M. Saleem, Int. J. Phys. Sci. 7, 2971 (2012)

    CAS  Google Scholar 

  52. Z.L. Wang, R. Yang, J. Zhou, Y. Qin, C. Xu, Y. Hu, S. Xu, Mater. Sci. Eng. R 70, 320 (2010)

    Google Scholar 

  53. P. Bindu, S. Thomas, J. Theor. Appl. Phys. 8, 123 (2014)

    Google Scholar 

  54. S. Dai, M.L. Dunn, H.S. Park, Nanotechnology 21(44), 445707 (2010)

    Google Scholar 

  55. S. Urry, Meas. Sci. Technol. 10, R16 (1999)

    CAS  Google Scholar 

  56. Z. Ma, W. Wang, D. Yu, J. Mater. Sci. 55, 796 (2020)

    CAS  Google Scholar 

  57. R. Tao, M. Parmar, G. Ardila, P. Oliveira, D. Marques, L. Montès, M. Mouis, Semicond. Sci. Technol. 32(6), 064003 (2017)

    Google Scholar 

  58. A.S. Dahiya, F. Morini, S. Boubenia, K. Nadaud, D. Alquier, G. Poulin-Vittrant, Adv. Mater. Technol. 3(2), 1700249 (2018)

    Google Scholar 

  59. Y. Chu, L. Wan, G. Ding, P. Wu, D. Qiu, J. Pan, H. He, in Proceedings: 2013 14th International Conference Electronic Packaging Technology, ICEPT 2013, 2013, p. 1292

Download references

Acknowledgements

Authors would like to express sincere thanks and gratitude to SSN Trust for delivering financial support to carry out this work.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by JAS and GP. SEF, BSS, and SR verified the analysis and supervised the research. All authors read and approved the final manuscript.

Corresponding author

Correspondence to J. Abanah Shirley.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shirley, J.A., Florence, S.E., Sreeja, B.S. et al. Zinc oxide nanostructure-based textile pressure sensor for wearable applications. J Mater Sci: Mater Electron 31, 16519–16530 (2020). https://doi.org/10.1007/s10854-020-04206-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04206-9

Navigation