Skip to main content

Advertisement

Log in

Effect of graphene nanoplatelets concentration on optical, dielectric and electrical properties of poly(2-ethyl-2-oxazoline)–polyvinylpyrrolidone–graphene nanocomposites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The polymer nanocomposites with good optical, dielectric and electrical properties have taken faithfulness in research due to their distinguishing benefits in electronic applications. Hence, in the present investigation, poly(2-ethyl-2-oxazoline)–polyvinylpyrrolidone–graphene nanoplatelets (PEOX–PVP–GNPs) nanocomposites were synthesized and their properties were evaluated. Field emission scanning electron microscopy micrograph images showed a uniform dispersion of GNPs within the PEOX–PVP binary matrix. X-ray diffraction analysis illustrated the increase of crystallinity of nanocomposites with increasing weight percentage of GNPs. Fourier-transform infrared spectroscopy confirmed intermolecular interaction between the PEOX–PVP matrix and the GNPs. PEOX–PVP–graphene nanocomposite shows decrease in the optical energy band gap and increase in Urbach energy with increasing GNPs concentration. PEOX–PVP–10 wt% graphene nanocomposite has the lowest band gap (= 1.2 eV) and highest Urbach energy (= 7.43 eV). Dielectric constant, dielectric loss and tangent loss of nanocomposites decrease with increasing frequency of the applied electric field. On the other hand, the AC electrical conductivity of nanocomposites is independent of frequency, at lower frequencies, and increases with increasing frequency, at higher frequencies. PEOX–PVP–10 wt% graphene nanocomposite has the higher dielectric constant (= 16), low dielectric loss (= 0.09) and low AC conductivity (= 8.47 × 10−9 S/cm) at 1 kHz. This nanocomposite having good dielectric, electrical and optical properties may find use in electronic and optoelectronic applications due to its enhanced properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. K.I. Winey, R.A. Vaia, Polymer nanocomposites. MRS Bull. 32(4), 314–322 (2011)

    Google Scholar 

  2. J.R. Potts, D.R. Dreyer, C.W. Bielawski, R.S. Ruoff, Graphene-based polymer nanocomposites. Polymer 52(1), 5–25 (2011)

    CAS  Google Scholar 

  3. S. Guo, S. Dong, E. Wang, Three-dimensional Pt-on-Pd bimetallic nanodendrites supported on graphene nanosheet: facile synthesis and used as an advanced nanoelectrocatalyst for methanol oxidation. ACS Nano 4(1), 547–555 (2009)

    Google Scholar 

  4. C. Pan, J. Zhang, K. Kou, Y. Zhang, G. Wu, Investigation of the through-plane thermal conductivity of polymer composites with in-plane oriented hexagonal boron nitride. Int. J. Heat Mass Transf. 120, 1–8 (2018)

    CAS  Google Scholar 

  5. J. Cui, Z. Zhou, M. Jia, X. Chen, C. Shi, N. Zhao, X. Guo, Solid polymer electrolytes with flexible framework of SiO2 nanofibers for highly safe solid lithium batteries. Polymers 12(6), 1324 (2020)

    CAS  Google Scholar 

  6. S. Chen, G. Meng, B. Kong, B. Xiao, Z. Wang, Z. Jing, Y. Gao, G. Wu, H. Wang, Y. Cheng, Asymmetric alicyclic amine–polyether amine molecular chain structure for improved energy storage density of high-temperature crosslinked polymer capacitor. Chem. Eng. J. 387, 123662 (2020)

    CAS  Google Scholar 

  7. X. Zhou, Z. Jia, A. Feng, S. Qu, X. Wang, X. Liu, B. Wang, G. Wu, Synthesis of porous carbon embedded with NiCo/CoNiO2 hybrids composites for excellent electromagnetic wave absorption performance. J. Colloid Interface Sci. 575, 130–139 (2020)

    CAS  Google Scholar 

  8. G. Wu, Y. Cheng, Z. Yang, Z. Jia, H. Wu, L. Yang, H. Li, P. Guo, H. Lv, Design of carbon sphere/magnetic quantum dots with tunable phase compositions and boost dielectric loss behavior. Chem. Eng. J. 333, 519–528 (2018)

    CAS  Google Scholar 

  9. Z. Jia, Z. Gao, K. Kou, A. Feng, C. Zhang, B. Xu, G. Wu, Facile synthesis of hierarchical A-site cation deficiency perovskite LaxFeO3−y/RGO for high efficiency microwave absorption. Compos. Commun. 20, 100344 (2020)

    Google Scholar 

  10. S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45(7), 1558–1565 (2007)

    CAS  Google Scholar 

  11. M.D. Stoller, S. Park, Y. Zhu, J. An, R.S. Ruoff, Graphene-based ultracapacitors. Nano Lett. 8(10), 3498–3502 (2008)

    CAS  Google Scholar 

  12. Y. Xu, W. Hong, H. Bai, C. Li, G. Shi, Strong and ductile poly (vinyl alcohol)/graphene oxide composite films with a layered structure. Carbon 47(15), 3538–3543 (2009)

    CAS  Google Scholar 

  13. A. Geim, K. Novoselov, The rise of graphene. Nat. Mater. 6, 183–191 (2007)

    CAS  Google Scholar 

  14. N. Li, W. Cheng, K. Ren, F. Luo, K. Wang, Q. Fu, Oscillatory shear-accelerated exfoliation of graphite in polypropylene melt during injection molding. Chin. J. Polym. Sci. 31(1), 98–109 (2013)

    CAS  Google Scholar 

  15. H. Kim, A.A. Abdala, C.W. Macosko, Graphene/polymer nanocomposites. Macromolecules 43(16), 6515–6530 (2010)

    CAS  Google Scholar 

  16. J. Yang, Y. Lin, J. Wang, M. Lai, J. Li, J. Liu, X. Tong, H. Cheng, Morphology, thermal stability, and dynamic mechanical properties of atactic polypropylene/carbon nanotube composites. J. Appl. Polym. Sci. 98(3), 1087–1091 (2005)

    CAS  Google Scholar 

  17. L. Lin, H. Deng, X. Gao, S. Zhang, E. Bilotti, T. Peijs, Q. Fu, Modified resistivity–strain behavior through the incorporation of metallic particles in conductive polymer composite fibers containing carbon nanotubes. Polym. Int. 62(1), 134–140 (2013)

    CAS  Google Scholar 

  18. Y. Kojima, A. Usuki, M. Kawasumi, A. Okada, Y. Fukushima, T. Kurauchi, O. Kamigaito, Mechanical properties of nylon 6-clay hybrid. J. Mater. Res. 8(5), 1185–1189 (1993)

    CAS  Google Scholar 

  19. S. Zhang, L. Lin, H. Deng, X. Gao, E. Bilotti, T. Peijs, Q. Zhang, Q. Fu, Synergistic effect in conductive networks constructed with carbon nanofillers in different dimensions. Express Polym. Lett. 6(2), 159–168 (2012)

    CAS  Google Scholar 

  20. A. Okada, A. Usuki, Twenty years of polymer–clay nanocomposites. Macromol. Mater. Eng. 291(12), 1449–1476 (2006)

    CAS  Google Scholar 

  21. J. Du, H.-M. Cheng, The fabrication, properties, and uses of graphene/polymer composites. Macromol. Chem. Phys. 213(10–11), 1060–1077 (2012)

    CAS  Google Scholar 

  22. T. Kuilla, S. Bhadra, D. Yao, N.H. Kim, S. Bose, J.H. Lee, Recent advances in graphene based polymer composites. Prog. Polym. Sci. 35(11), 1350–1375 (2010)

    CAS  Google Scholar 

  23. R. Sengupta, M. Bhattacharya, S. Bandyopadhyay, A.K. Bhowmick, A review on the mechanical and electrical properties of graphite and modified graphite reinforced polymer composites. Prog. Polym. Sci. 36(5), 638–670 (2011)

    CAS  Google Scholar 

  24. K. Hu, D.D. Kulkarni, I. Choi, V.V. Tsukruk, Graphene-polymer nanocomposites for structural and functional applications. Prog. Polym. Sci. 39(11), 1934–1972 (2014)

    CAS  Google Scholar 

  25. S. Yu, N. Li, D. Higgins, D. Li, Q. Li, H. Xu, J.S. Spendelow, G. Wu, Self-assembled reduced graphene oxide/polyacrylamide conductive composite films. ACS Appl. Mater. Interfaces 6(22), 19783–19790 (2014)

    CAS  Google Scholar 

  26. F.-C. Chiu, Y.-J. Chen, Evaluation of thermal, mechanical, and electrical properties of PVDF/GNP binary and PVDF/PMMA/GNP ternary nanocomposites. Composites A 68, 62–71 (2015)

    CAS  Google Scholar 

  27. N. Maity, A. Mandal, K. Roy, A.K. Nandi, Physical and dielectric properties of poly(vinylidene fluoride)/polybenzimidazole functionalized graphene nanocomposites. J. Polym. Sci. B 57(4), 189–201 (2019)

    CAS  Google Scholar 

  28. C. Tu, K. Nagata, S. Yan, Influence of melt-mixing processing sequence on electrical conductivity of polyethylene/polypropylene blends filled with graphene. Polym. Bull. 74(4), 1237–1252 (2017)

    CAS  Google Scholar 

  29. I. Tiwari, M. Gupta, C.M. Pandey, V. Mishra, Gold nanoparticle decorated graphene sheet-polypyrrole based nanocomposite: its synthesis, characterization and genosensing application. Dalton Trans. 44(35), 15557–15566 (2015)

    CAS  Google Scholar 

  30. H.-B. Zhang, W.-G. Zheng, Q. Yan, Y. Yang, J.-W. Wang, Z.-H. Lu, G.-Y. Ji, Z.-Z. Yu, Electrically conductive polyethylene terephthalate/graphene nanocomposites prepared by melt compounding. Polymer 51(5), 1191–1196 (2010)

    CAS  Google Scholar 

  31. Z. Wang, N.M. Han, Y. Wu, X. Liu, X. Shen, Q. Zheng, J.-K. Kim, Ultrahigh dielectric constant and low loss of highly-aligned graphene aerogel/poly(vinyl alcohol) composites with insulating barriers. Carbon 123, 385–394 (2017)

    CAS  Google Scholar 

  32. F.H. Falqi, O.A. Bin-Dahman, M. Hussain, M.A. Al-Harthi, Preparation of miscible PVA/PEG blends and effect of graphene concentration on thermal, crystallization, morphological, and mechanical properties of PVA/PEG (10 wt%) blend. Int. J. Polym. Sci. 2018, 8527693 (2018)

    Google Scholar 

  33. S. A, S.R. Manohara, L. Gerward, Influence of polyvinylpyrrolidone on optical, electrical, and dielectric properties of poly(2-ethyl-2-oxazoline)-polyvinylpyrrolidone blends. J. Mol. Liq. 247, 328–336 (2017)

    Google Scholar 

  34. A.B. Bourlinos, V. Georgakilas, R. Zboril, T.A. Steriotis, A.K. Stubos, C. Trapalis, Aqueous-phase exfoliation of graphite in the presence of polyvinylpyrrolidone for the production of water-soluble graphenes. Solid State Commun. 149(47–48), 2172–2176 (2009)

    CAS  Google Scholar 

  35. A.S. Wajid, S. Das, F. Irin, H.T. Ahmed, J.L. Shelburne, D. Parviz, R.J. Fullerton, A.F. Jankowski, R.C. Hedden, M.J. Green, Polymer-stabilized graphene dispersions at high concentrations in organic solvents for composite production. Carbon 50(2), 526–534 (2012)

    CAS  Google Scholar 

  36. R. López, R. Gómez, Band-gap energy estimation from diffuse reflectance measurements on sol–gel and commercial TiO2: a comparative study. J. Sol–Gel Sci. Technol. 61(1), 1–7 (2012)

    Google Scholar 

  37. P. Kubelka, New contributions to the optics of intensely light-scattering materials. Part I. J. Opt. Soc. Am. 38(5), 448–457 (1948)

    CAS  Google Scholar 

  38. J. Tauc, A. Menth, States in the gap. J. Non-Cryst. Solids 8–10, 569–585 (1972)

    Google Scholar 

  39. M. El-Nahass, M. Dongol, M. Abou-Zied, A. El-Denglawey, The compositional dependence of the structural and optical properties of amorphous As20Se80−xTlx films. Physica B 368(1–4), 179–187 (2005)

    CAS  Google Scholar 

  40. F. Urbach, The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids. Phys. Rev. 92(5), 1324–1324 (1953)

    CAS  Google Scholar 

  41. N. Mott, E. Davis, Electronic Process in Non-crystalline Materials (Oxford University Press, Oxford, 1971)

    Google Scholar 

  42. R.K. Nb, V. Crasta, B. Praveen, M. Kumar, Studies on structural, optical and mechanical properties of MWCNTs and ZnO nanoparticles doped PVA nanocomposites. Nanotechnol. Rev. 4(5), 457–467 (2015)

    Google Scholar 

  43. S.K. O’Leary, S. Zukotynski, J.M. Perz, Disorder and optical absorption in amorphous silicon and amorphous germanium. J. Non-Cryst. Solids 210(2–3), 249–253 (1997)

    Google Scholar 

  44. S. Abd-El-Messieh, H. Naguib, Electrical conductivity and dielectric behavior of some poly (alkyl methacrylate) s/polyvinylpyrrolidone blends. Polym.–Plast. Technol. Eng. 44(8–9), 1591–1606 (2005)

    CAS  Google Scholar 

  45. A. Saad, A. Hassan, M. Youssif, M. Ahmed, Studies of electrical properties of some fire-retarding poly (vinyl chloride) compositions. J. Appl. Polym. Sci. 65(1), 27–35 (1997)

    CAS  Google Scholar 

  46. X. Han, S. Chen, X. Lv, H. Luo, D. Zhang, C.R. Bowen, Using a novel rigid-fluoride polymer to control the interfacial thickness of graphene and tailor the dielectric behavior of poly (vinylidene fluoride–trifluoroethylene–chlorotrifluoroethylene) nanocomposites. Phys. Chem. Chem. Phys. 20(4), 2826–2837 (2018)

    CAS  Google Scholar 

  47. Q. Guo, Q. Xue, J. Sun, M. Dong, F. Xia, Z. Zhang, Gigantic enhancement in the dielectric properties of polymer-based composites using core/shell MWCNT/amorphous carbon nanohybrids. Nanoscale 7(8), 3660–3667 (2015)

    CAS  Google Scholar 

  48. M. Taj, S.R. Manohara, S.M. Hanagodimath, L. Gerward, Novel conducting poly(3,4-ethylenedioxythiophene)–graphene nanocomposites with gigantic dielectric properties and narrow optical energy band gap. Polym. Test. 90, 106650 (2020)

    CAS  Google Scholar 

  49. V.K. Prateek, R.K. Thakur, Gupta, Recent progress on ferroelectric polymer-based nanocomposites for high energy density capacitors: synthesis, dielectric properties, and future aspects. Chem. Rev. 116(7), 4260–4317 (2016)

    CAS  Google Scholar 

  50. K. Yang, X. Huang, L. Fang, J. He, P. Jiang, Fluoro-polymer functionalized graphene for flexible ferroelectric polymer-based high-k nanocomposites with suppressed dielectric loss and low percolation threshold. Nanoscale 6(24), 14740–14753 (2014)

    CAS  Google Scholar 

  51. S.A. Saafan, M.K. El-Nimr, E.H. El-Ghazzawy, Study of dielectric properties of polypyrrole prepared using two different oxidizing agents. J. Appl. Polym. Sci. 99(6), 3370–3379 (2006)

    CAS  Google Scholar 

  52. M. Roy, J. Nelson, R. MacCrone, L.S. Schadler, C. Reed, R. Keefe, Polymer nanocomposite dielectrics—the role of the interface. IEEE Trans. Dielectr. Electr. Insul. 12(4), 629–643 (2005)

    CAS  Google Scholar 

  53. F. He, S. Lau, H.L. Chan, J. Fan, High dielectric permittivity and low percolation threshold in nanocomposites based on poly (vinylidene fluoride) and exfoliated graphite nanoplates. Adv. Mater. 21(6), 710–715 (2009)

    CAS  Google Scholar 

  54. S. A, S.R. Manohara, Thermal, conductivity, and dielectric properties of poly(2-ethyl-2-oxazoline)-polyvinylpyrrolidone blends. J. Polym. Res. 25(8), 174 (2018)

    Google Scholar 

  55. M. Laurati, P. Sotta, D.R. Long, L.A. Fillot, A. Arbe, A. Alegrı̀a, J.P. Embs, T. Unruh, G.J. Schneider, J. Colmenero, Dynamics of water absorbed in polyamides. Macromolecules 45(3), 1676–1687 (2012)

    CAS  Google Scholar 

  56. X. Huang, C. Zhi, P. Jiang, D. Golberg, Y. Bando, T. Tanaka, Temperature-dependent electrical property transition of graphene oxide paper. Nanotechnology 23(45), 455705 (2012)

    Google Scholar 

  57. M. Amin, H.M. Rafique, M. Yousaf, S.M. Ramay, S. Atiq, Structural and impedance spectroscopic analysis of Sr/Mn modified BiFeO3 multiferroics. J. Mater. Sci. Mater. Electron. 27(10), 11003–11011 (2016)

    CAS  Google Scholar 

Download references

Acknowledgements

S. R. Manohara wish to thank the Vision Group on Science and Technology (VGST), Department of Information Technology, Biotechnology and Science and Technology, Government of Karnataka for providing financial support under Project No. KSTePS/VGST/03/CISEE/2015–2016/GRD-470. One of the author, Shubha A., is grateful to Siddaganga Institute of Technology, Tumakuru for providing research assistantship for carrying out current research work. Authors acknowledge helpful assistance of Dr. Basavaraj Angadi of Department of Physics, Bangalore University and Dr. V. Udaykumar of Department of Chemistry at this Institute for XRD and FTIR measurements, respectively. FESEM and UV–Vis DRS characterizations were performed using facilities at CeNSE, Indian Institute of Science, Bengaluru funded by Ministry of Human Resource Development (MHRD), Ministry of Electronics and Information Technology (MeitY) and Nanomission, Department of Science and Technology (DST), Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. R. Manohara.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shubha, A., Manohara, S.R. Effect of graphene nanoplatelets concentration on optical, dielectric and electrical properties of poly(2-ethyl-2-oxazoline)–polyvinylpyrrolidone–graphene nanocomposites. J Mater Sci: Mater Electron 31, 16498–16510 (2020). https://doi.org/10.1007/s10854-020-04204-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04204-x

Navigation