Skip to main content
Log in

Hydrothermal synthesis of Ba1−xLaxTiO3 (x = 0.2, 0.4, 0.6, & 0.8) nanorods: structure, morphology, optical band gap, and dielectricity behavior

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A series of Ba1−xLaxTiO3 (x = 0.2, 0.4, 0.6, & 0.8) nanorods were synthesized through hydrothermal method. The X-ray diffraction patterns indicated the cubic phases for x = 0.2 – 0.8 contents. The TEM pictures revealed the formation of nanorods of high length. The Tauc’s plots showed the wide band gap (Eg) for x = 0.2 & 0.6 compositions while the narrow band gap was noticed for x = 0.4 & 0.8 contents. At low-frequency (dielectric constant = − 1051.4 at log ω = 2.4627) values, the negative dielectric constant and dielectric loss were observed at x = 0.2. This behavior was similar to the metamaterial. At 8 MHz frequency, the high dielectric constant of 35.7 was noticed for x = 0.2. In addition, the frequency dependence of ac-electrical conductivity was also studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data will be made immediately available based on request.

References

  1. S. Dastagiri, M. V. Lakshmaiah, K. Chandra Babu Naidu, Defect dipole polarization mechanism in low-dimensional Europium substituted Al0.8La0.2TiO3 nanostructures. Physica E 120, 114058 (2020)

  2. N.S. Kumar, R. P. Suvarna, K.C. B. Naidu, S. Ramesh, K. Srinivas et al., Optical bandgap and ferroelectric studies of Pb0.8-yLayCo0.2TiO3 (y = 0.2 to 0.8) synthesized by microwave irradiation processed sol-gel technique, Advances in Natural Science: Nanoscience and Nanotechnology 10 (2019) 035014

  3. S. Dastagiri, M.V. Lakshmaiah, K. Chandra Babu Naidu, N. Suresh Kumar, A. Khan, Induced dielectric behavior in high dense AlxLa1-xTiO3 (x = 02–08) nanospheres. J. Mater. Sci.: Mater. Electron. 30, 20253–20264 (2019)

    CAS  Google Scholar 

  4. N.S. Kumar, R.P. Suvarna, K. Chandra Babu Naidu, Microwave heated lead cobalt titanate nanoparticles synthesized by sol-gel technique: structural, morphological, dielectric, impedance and ferroelectric properties. Mater. Sci. Eng. B 242, 23–30 (2019)

    CAS  Google Scholar 

  5. N.S. Kumar, R.P. Suvarna, K. Chandra Babu Naidu, Grain and grain boundary conduction mechanism in sol-gel synthesized and microwave heated Pb0.8-yLayCo0.2TiO3 (y = 0.2–0.8) nanofibers. Mater. Chem. Phys. 223, 241–248 (2019)

    Google Scholar 

  6. N.S. Kumar, R.P. Suvarna, K. Chandra Babu Naidu, Phase change and ferroelectric nature of microwave heated lead cobalt titanate nanoparticles prepared by sol-gel method. Int. J. Appl. Ceram. Technol. 16, 130–137 (2019)

    Google Scholar 

  7. S. Ramesh, D. Ravinder, K. Chandra Babu Naidu, N. Suresh Kumar, K. Srinivas et al., A review on giant piezoelectric coefficient, materials and applications. Biointerface Res. Appl. Chem. 9, 4205–4216 (2019)

    CAS  Google Scholar 

  8. N.S. Kumar, R.P. Suvarna, K. ChandraBabuNaidu, Sol-Gel synthesized and microwave heated Pb0.8-yLayCo0.2TiO3 (y = 0.2–0.8) nanoparticles: structural morphological and dielectric properties. Ceram. Int. 44, 18189–18199 (2018)

    CAS  Google Scholar 

  9. N.S. Kumar, R.P. Suvarna, K. Chandra Babu Naidu, Structural and ferroelectric properties of microwave heated lead cobalt titanate nanoparticles synthesized by sol–gel technique. J. Mater. Sci. Mater. Electron. 29, 4738–4742 (2018)

    Google Scholar 

  10. N.S. Kumar, R.P. Suvarna, K. Chandra Babu Naidu, G.R. Kumar, S. Ramesh, Structural and functional properties of sol-gel synthesized and microwave heated Pb0.8Co0.2-zTiO3 (z = 0.05-0.2) nanoparticles. Ceram. Int. 44, 19408–19420 (2018)

    CAS  Google Scholar 

  11. N.S. Kumar, R.P. Suvarna, K. Chandra Babu Naidu, Multiferroic nature of microwave-processed and sol-gel synthesized nano Pb1-xCoxTiO3 (x =0.2–0.8). Ceram. Cryst. Res. Technol. 53, 1800139 (2018)

    Google Scholar 

  12. K. Chandra Babu Naidu, T. Sofi Sarmash, M. Maddaiah, P. Sreenivasula Reddy, D. JhansiRani, T. Subbarao, Synthesis and characterization of MgO doped SrTiO3 ceramics. J. Austral. Ceram. Soc. 52, 95–101 (2016)

    Google Scholar 

  13. K. Chandra Babu Naidu, T. Sofi Sarmash, V. Narasimha Reddy, M. Maddaiah, P. Sreenivasula Reddy, T. Subbarao, Structural, dielectric and electrical properties of La2O3 doped SrTiO3 ceramics. J. Austral. Ceram. Soc. 51, 94–102 (2015)

  14. N. Raghu Ram, M. Prakash, U. Naresh, N. Suresh Kumar, T. Sofi Sarmash, T. Subbarao, R. Jeevan Kumar, G. Ranjith Kumar, K. Chandra Babu Naidu, Review on magnetocaloric effect and materials. J. Supercond. Nov. Magn. 31, 1971–1979 (2018)

  15. M. Prakash, K. Chandra Babu Naidu, D. Kothandan, R. Jeevan Kumar, Barium titanate microspheres by low temperature hydrothermal method: studies on structural, morphological and optical properties. J. Asian Ceram. Soc. 6, 1–6 (2018)

  16. M. Wang, C. Wang, Y. Liu, X. Zhou, Hybrid density functional theory description of non-metal doping in perovskite BaTiO3 for visible-light photocatalysis. J. Solid State Chem. 280, 121018 (2019)

    CAS  Google Scholar 

  17. L. Vovchenko, O. Lozitsky, L. Matzui, V. Oliynyk, V. Zagorodnii, M. Skoryk, Electromagnetic shielding properties of epoxy composites with hybrid filler nanocarbon/BaTiO3. Mater. Chem. Phys. 240, 122234 (2020)

    Google Scholar 

  18. M.M. Vijatovic, B.D. Stojanovic, J.D. Bobic, T. Ramoska, P. Bowen, Properties of lanthanum doped BaTiO3 produced from nanopowders. Ceram. Int. 36, 1817–1824 (2010)

    CAS  Google Scholar 

  19. W. Wang, L. Caon, W. Liu, Ge Su, Wenxing Zhang, Low-temperature synthesis of BaTiO3 powders by the sol–gel-hydrothermal method. Ceram. Int. 39, 7127–7134 (2013)

    CAS  Google Scholar 

  20. D Kothandan, R.J. Kumar, M. Prakash, K. Chandra Babu Naidu, Structural, morphological and optical properties of Ba1-xCuxTiO3 (x = 0.2, 0.4, 0.6, 0.8) nanoparticles synthesized by hydrothermal method. Mater. Chem. Phys. 215, 310–315 (2018)

  21. K. Chandra Babu Naidu, V. Narasimha Reddy, T. Sofi Sarmash, T. Subbarao, Structural, morphological, optical, electrical, impedance and ferroelectric properties of BaO-ZnO-TiO2 ternary system. J. Austral. Ceram. Soc. 55, 201–218 (2019)

  22. s. Bhaskar Reddy, K. Prasad Rao, M.S. Ramachandra Rao, Effect of La substitution on the structural and dielectric properties of BaZr0.1Ti0.9O3 ceramics. J. Alloys Compds. 481, 692–696 (2009)

  23. Zouaria, Z. Sassib, L. Seveyratb, N. Abdelmoulaa, L. Lebrunb, H. Khemakhem, Structural, dielectric, piezoelectric, ferroelectric and electro-caloric properties of Ba1−xCaxTi0.975(Nb0.5Yb0.5)0.025O3 lead-free ceramics. Ceram. Int. 44, 8018–8025 (2018)

  24. M. Prakash, R. Jeevan Kumar, K. Chandra Babu Naidu, Optical and functional properties of hydrothermally synthesized tetragonal Ba0.4Cu0.6−xLaxTiO3 (x = 0.2–0.6) nanoparticles. Mater. Res. Express 7, 015037 (2020)

  25. A. Ianculescu, Z.V. Mocanu, L.P. Curecheriu, L. Mitoseriu, L. Padurariu, R. Truşcă, Dielectric and tunability properties of La-doped BaTiO3 ceramics. J. Alloy Compd. 509, 10040–10049 (2011)

    CAS  Google Scholar 

  26. D. Finlay, Morrison Derek, C Sinclair, Anthony RWest, Doping mechanisms and electrical properties of La-doped BaTiO3 ceramics. Int. J. Inorg. Mater. 3, 1205–1210 (2001)

    Google Scholar 

  27. Y. Wang, K. Miao, W. Wang, Yi Qin, Fabrication of lanthanum doped BaTiO3 fine-grained ceramics with a high dielectric constant and temperature-stable dielectric properties using hydro-phase method at atmospheric pressure. J. Eur. Ceram. Soc. 37, 2385–2390 (2017)

    Google Scholar 

  28. V.S. Puli, P. Li, S. Adireddy, D.B. Chrisey, Crystal structure, dielectric, ferroelectric and energy storage properties of La-doped BaTiO3 semiconducting ceramics. J. Adv. Dielectrics 5, 1550027 (2015)

  29. D.P. Kumah, Y. Yacoby, S.A. Pauli, P.R. Willmott, R. Clarke, La-doped BaTiO3 heterostructures: compensating the polarization discontinuity. APL Mater. 1, 062107 (2013). https://doi.org/10.1063/1.4849735

    Article  CAS  Google Scholar 

  30. A. Kumari, B.D. Ghosh, La doped barium titanate/polyimide nanocomposites: a study of the effect of La doping and investigation on thermal, mechanical and high dielectric properties. J. Appl. Polym. Sci. 135, 46826 (2018)

    Google Scholar 

  31. M.M. Vijatovi¢ Petrovi¢a, J.D. Bobi¢a, R. Grigalaitisb, B.D. Stojanovi¢a, J. Banysb, La-doped and La/Mn-co-doped barium titanate ceramics. Acta Physica Polonica A 124, 155–160 (2013). https://doi.org/10.12693/APhysPolA.124.155

  32. Muhammad Rizwan, Hajra, I. Zeba, Muhammad Shakil, S. S. A. Gillani, Zahid Usman, Electronic, structural and optical properties of BaTiO3 doped with lanthanum (La): Insight from DFT calculation, Optik 211 (2020) 164611

  33. R.P. Patil, C. Hiragond, G.H. Jain, P.K. Khanna, V.B. Gaikwad, P.V. More, La doped BaTiO3 nanostructures for room temperature sensing of NO2/NH3: focus on La concentration and sensing mechanism. Vacuum 166, 37–44 (2019)

  34. M. Wei, J. Zhang, Wu Kaituo, H. Chen, C. Yang, Effect of BiMO3 (M=Al, In, Y, Sm, Nd, and La) doping on the dielectric properties of BaTiO3 ceramics. Ceram. Int. 43, 9593–9599 (2017)

    CAS  Google Scholar 

  35. F. Trequattrini, F. Cordero, T. Kolodiazhnyi, Anelastic relaxation from hydrogen and other defects in La-doped BaTiO3. Mater. Sci. Eng. A 521–522, 80–83 (2009)

    Google Scholar 

  36. M. Habib, M. Hwan, L. Da, J. Kim, H.I. Choi, M.-H. Kim, W.-J. Kim, T.K. Song, K.S. Choi, Enhanced piezoelectric performance of donor La3+-doped BiFeO3–BaTiO3 lead-free piezoceramics. Ceram. Int. 46, 7074–7080 (2020)

  37. D. Gulwade, P. Gopalan, Dielectric properties of A- and B-site doped BaTiO3: effect of La and Ga. Physica B 404, 1799–1805 (2009)

    CAS  Google Scholar 

  38. C.H. Wu, J.P. Chu, S.F. Wang, T.N. Lin, W.Z. Chang, V.S. John, Effects of post annealing on the material characteristics and electrical properties of La doped BaTiO3 sputtered films. Surf. Coat. Technol. 202, 5448–5451 (2008)

    CAS  Google Scholar 

  39. Lu Da-Yong, Y.-Y. Peng, Yu Xin-Yu, X.-Y. Sun, Dielectric properties and defect chemistry of La and Tb co-doped BaTiO3 ceramics. J. Alloy Compd. 681, 128–138 (2016)

    Google Scholar 

  40. C. Bi, M. Zhu, Q. Zhang, Y. Li, H. Wang, Electromagnetic wave absorption properties of multi-walled carbon nanotubes decorated with La-doped BaTiO3 nanocrystals synthesized by a solvothermal method. Mater. Chem. Phys. 126, 596–601 (2011)

    CAS  Google Scholar 

  41. A.I. Ali, K. Park, A. Ullah, R. Huh, Y.S. Kim, Ferroelectric enhancement of La-doped BaTiO3 thin films using SrTiO3 buffer layer. Thin Solid Films 551, 127–130 (2014)

    CAS  Google Scholar 

  42. A. Shukla, R.N.P. Choudhary, A.K. Thakur, D.K. Pradhan, Structural, microstructural and electrical studies of La and Cu doped BaTiO3 ceramics. Physica B 405, 99–106 (2010)

    CAS  Google Scholar 

  43. F.D. Morrison, D.C. Sinclair, A.R. West, Doping mechanisms and electrical properties of La-doped BaTiO3 ceramics. Int. J. Inorg. Mater. 3, 1205–1210 (2001)

  44. A.C. Ianculescu, C.A. Vasilescu, M. Crisan, M. Raileanu, B.S. Vasile, M. Calugaru, D. Crisan, N. Dragan, L. Curecheriu, L. Mitoseriu, Formation mechanism and characteristics of lanthanum-doped BaTiO3 powders and ceramics prepared by the sol–gel process. Mater. Charact. 106, 195–207 (2015)

    CAS  Google Scholar 

  45. D. Kim, J. Kim, T. Noh, J. Ryu, Y.-N. Kim, H. Lee, Dielectric properties and temperature stability of BaTiO3 co-doped La2O3 and Tm2O3. Curr. Appl. Phys. 12, 952–956 (2012)

    Google Scholar 

  46. F. Maldonado, A. Stashans, DFT study of Ag and La codoped BaTiO3. J. Phys. Chem. Solids 102, 136–141 (2017)

    CAS  Google Scholar 

  47. S. Mahboob, A.B. Dutta, C. Prakash, G. Swaminathan, S.V. Suryanarayana, G. Prasad, G.S. Kumar, Dielectric behaviour of microwave sintered rare-earth doped BaTiO3 ceramics. Mater. Sci. Eng. B 134(1), 36–40 (2006)

    CAS  Google Scholar 

  48. P. Scherrer, Bestimmung der Grosse und der Inneren Struktur von Kolloidteilchen Mittels Rontgenstrahlen, Nachrichten von der Gesellschaft der Wissenschaften, Gottingen. Mathematisch-Physikalische Klasse, 2, 98–100 (1918)

  49. R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. A 32, 751–767 (1976)

    Google Scholar 

  50. N. Raghuram, T. Subba Rao, K. Chandra Babu Naidu, Electrical and impedance spectroscopy properties of hydrothermally synthesized Ba0.2Sr0.8-yLayFe12O19 (y = 0.2 - 0.8) nanorods. Ceram. Int. 46, 5894–5906 (2020)

  51. N. Raghuram, T.S. Rao, K. Chandra Babu Naidu, Investigations on functional properties of hydrothermally synthesized Ba1-xSrxFe12O19 (x = 0.0 - 0.8) nanoparticles. Mater. Sci. Semicond. Process. 94, 136–150 (2019)

  52. U. Naresh, R.J. Kumar, K. Chandra Babu Naidu, Hydrothermal synthesis of barium copper ferrite nanoparticles: nanofiber formation, optical, and magnetic properties. Mater. Chem. Phys. 236, 121807 (2019)

  53. U. Naresh, R. J. Kumar, K. Chandra Babu Naidu, Optical, Magnetic and Ferroelectric Properties of Ba0.2Cu0.8-xLaxFe2O4 (x = 0.2 - 0.6) Nanoparticles, Ceramics International, 45 (2019) 7515–7523

  54. N. Raghuram, T. Subba Rao, K. Chandra Babu Naidu, Magnetic properties of hydrothermally synthesized Ba1-xSrxFe12O19 (x = 0.0–0.8) nanomaterials. Appl. Phys. A 125, 839 (2019)

    CAS  Google Scholar 

  55. U. Naresh, R.J. Kumar, K.C.B. Naidu, Structural, morphological, optical, magnetic and ferroelectric properties of Ba0.2La0.8Fe2O4 nanofibers. Biointerface Res. Appl. Chem. 9, 4243–4247 (2019)

    CAS  Google Scholar 

  56. J. Wang, Z. Wang, B. Huang, Y. Ma, Y. Liu, X. Qin, X. Zhang, Y. Dai, Oxygen vacancy induced band-gap narrowing and enhanced visible light photocatalytic activity of ZnO. ACS Appl. Mater. Interfaces 4, 4024–4030 (2012)

    CAS  Google Scholar 

  57. C.G. Koops, On the dispersion of resistivity and dielectric constant of some semiconductors at audio frequencies. Phys. Rev. 83, 121–124 (1951)

    CAS  Google Scholar 

  58. K.W. Wagner, The distribution of relaxation times in typical dielectrics. Ann. Phys. 40, 817 (1913)

    Google Scholar 

  59. B. Li, G. Sui, W.H. Zhong, Single negative metamaterials in unstructured polymer nanocomposites toward selectable and controllable negative permittivity. Adv. Mater. 21, 4176–4180 (2009)

    CAS  Google Scholar 

  60. O. Sakai, A. Iwai, Y. Omura, S. Iio, T. Naito, Wave propagation in and around negative-dielectric-constant discharge plasma. Phys. Plasmas 25, 031901 (2018)

    Google Scholar 

  61. M.A. Rahman, E. Ahamed, M.R.I. Faruque, M.T. Islam, Preparation of NiAl2O4-based flexible substrates for metamaterials with negative dielectric properties. Sci. Rep. 8, 14948 (2018)

    Google Scholar 

  62. J.A. Bartkowska, D. Bochenek, Microstructure and dielectric properties of BF–PFN ceramics with negative dielectric loss. J. Mater. Sci.: Mater. Electron. 29, 17262–17268 (2018)

    CAS  Google Scholar 

  63. E. Axelrod, A. Puzenko, Y. Haruvy, R. Reisfeld, Y. Feldman, Negative dielectric loss phenomenon in porous sol–gel glasses. J. Non-Cryst. Solids 352, 4166–4173 (2006)

    CAS  Google Scholar 

  64. R.M. De la Cruz, C. Kanyinda-Malu, J.E. Muñoz Santiuste, Dielectric tensor of a rectangular arrangement of Ag nanoparticles in anisotropic LiNbO3: analysis of the negative epsilon conditions. Physica B 581, 411957 (2020)

    Google Scholar 

  65. C.W. Chu, F. Chen, J. Shulman, S. Tsui, Y.Y. Xue, W. Wen, P. Sheng, A negative dielectric constant in nano-particle materials under an electric field at very low frequencies. Strongly Correl. Electron. Mater. 5932, 59320X–X59410 (2005). https://doi.org/10.1117/12.626267

    Article  Google Scholar 

  66. D. Schurig, J.J. Mock, D.R. Smith, Electric-field-coupled resonators for negative permittivity metamaterials. Appl. Phys. Lett. 88, 041109 (2006)

    Google Scholar 

  67. Q. Hou, K. Sun, P. Xie, K. Yan, R. Fan, Y. Liu, Ultrahigh dielectric loss of epsilon-negative copper granular composites. Mater. Lett. 169, 86–89 (2016)

    CAS  Google Scholar 

  68. H. Yan, C. Zhao, K. Wang, L. Deng, M. Ma, G. Xu, Negative dielectric constant manifested by static electricity. Appl. Phys. Lett. 102, 062904 (2013)

    Google Scholar 

  69. K. Lee, A.J. Heeger, Crossover to negative dielectric response in the low-frequency spectra of metallic polymers. Phys. Rev. B 68, 035201 (2003)

    Google Scholar 

  70. X. Yao, X. Kou, J. Qiu, Nano-Al2O3/PANI composites with high negative permittivity. Org. Electron. 39, 133–137 (2016)

    CAS  Google Scholar 

  71. Y. Fu, L. Thylén, H. Ågren, A lossless negative dielectric constant from quantum dot exciton polaritons. Nano Lett. 8, 1551–1555 (2008)

    CAS  Google Scholar 

  72. K.L. Gordon, J.H. Kang, C. Park, P.T. Lillehei, J.S. Harrison, A novel negative dielectric constant material based on phosphoric acid doped poly(benzimidazole). J. Appl. Polym. Sci. 125, 2977–2985 (2012)

    CAS  Google Scholar 

  73. H. Luo, J. Qiu, Carbon nanotubes / epoxy resin metacomposites with adjustable radio-frequency negative permittivity and low dielectric loss. Ceram. Int. 45, 843–848 (2019)

    CAS  Google Scholar 

  74. Z. Li, Y. Yuan, M. Yao, L. Cao, B. Tang, S. Zhang, Synthesis and characterization of PTFE/(Na Li1-x)0.5Nd0.5TiO3 composites with high dielectric constant and high temperature stability for microwave substrate applications. Ceram. Int. 45, 22015–22021 (2019)

    CAS  Google Scholar 

  75. V.P. Anju, S.K. Narayanankutty, High dielectric constant polymer nanocomposite for embedded capacitor applications. Mater. Sci. Eng., B 249, 114418 (2019)

    CAS  Google Scholar 

Download references

Acknowledgements

The author would like to thank Deanship of Scientific Research at Majmaah University for supporting this work under Project Number No. R-1441–160.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Baba Basha.

Ethics declarations

Conflict of interest

The authors declare that we have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baba Basha, D. Hydrothermal synthesis of Ba1−xLaxTiO3 (x = 0.2, 0.4, 0.6, & 0.8) nanorods: structure, morphology, optical band gap, and dielectricity behavior. J Mater Sci: Mater Electron 31, 16448–16458 (2020). https://doi.org/10.1007/s10854-020-04199-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04199-5

Navigation