Skip to main content
Log in

Electromagneto-mechanical numerical analysis and experiment of transformer influenced by DC bias considering core magnetostriction

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Abnormal vibration may cause the internal failure of transformers. In particular, the nonlinear saturation vibration of the iron core under direct current (DC) magnetic bias will lead to serious structural damage. In this paper, the dynamic process of transformer deformation under magnetic bias is completed by studying the magnetostrictive effect of ferromagnetic materials and analyzing the strain of the iron core. First, the silicon steel magnetostriction model is proposed and the computing processing is analyzed which explains the directivity characteristics of oriented silicon steel. Next, a coupled transformer model of the electromagnetic field and mechanical strain are built based on the piezomagnetic effect. Then, a dry transformer is performed in finite element (FE) application and after that, the displacements of test points are calculated by using measured magnetostriction curves and the FE model. Finally, vibration test is done to analyze the DC bias characteristics. The result of both calculation and measurements reveal that the magnetostriction of silicon material is the key factor of core vibration. It leads to the DC bias of transformer core remarkably and the magnetostriction of core material must be considered for transformer design and its applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. M.G. Abidi, M.B. Smida, M. Khalgui, Z. Li, T. Qu, IEEE Access 7, 22856 (2019)

    Google Scholar 

  2. M. Bagheri, A. Zollanvari, S. Nezhivenko, IEEE Access 6, 9862 (2018)

    Google Scholar 

  3. O.A. Mohammed, T. Calvert, R. Mcconnell, IEEE Trans. Magn. 37, 3388 (2001)

    Google Scholar 

  4. K. Delaere, W. Heylen, R. Belmans, K. Hameyer, IEEE Trans. Magn. 38, 969 (2002)

    Google Scholar 

  5. S. Somkun, A.J. Moses, P.I. Anderson, IEEE Trans. Magn. 45, 4744 (2009)

    CAS  Google Scholar 

  6. L. Zhu, Q. Yang, R. Yan, Y. Li, X. Zhang, W. Yan, J. Zhu, J. Appl. Phys. 113, 024314 (2013)

    Google Scholar 

  7. X.U. Jianyuan, Y. Chen, L.I. Hui, E. Shiping, J. Chen, S. Cai, High Volt. Eng. 43, 2001 (2017)

    Google Scholar 

  8. A. Elserougi, A.M. Massoud, A.S. Abdel-Khalik, S. Ahmed, Electr. Power Syst. Res. 116, 12 (2014)

    Google Scholar 

  9. Z. Pan, X. Wang, G. Mei, Y. Liu, W. Yao, H. Liu, X. Wen, Electr. Power Syst. Res. 132, 104 (2016)

    Google Scholar 

  10. S. Yang, G. Zhou, Z. Wei, IEEE Access 6, 72629 (2018)

    Google Scholar 

  11. E.F. Fuchs, Y. You, D.J. Roesler, IEEE Trans. Power Deliv. 14, 443 (1999)

    Google Scholar 

  12. J. Kim, J. Lee, K.H. Kim, B. Nam, J. Korean Phys. Soc. 61, 1691 (2012)

    Google Scholar 

  13. M. Dolinar, D. Dolinar, G. Stumberger, B. Polajzer, J. Ritonja, IEEE Trans. Magn. 42, 2849 (2006)

    Google Scholar 

  14. S.G. Abdulsalam, W.S. Xu, W. Neves, X. Liu, IEEE Trans. Power Deliv. 21, 170 (2006)

    Google Scholar 

  15. S. Ito, T. Mifune, T. Matsuo, C. Kaido, IEEE Trans. Magn. 52, 1 (2016)

    Google Scholar 

  16. L. Zhu, Q. Yang, R. Yan, Y. Li, W. Yan, IEEE Trans. Appl. Supercond. 24, 1 (2014)

    CAS  Google Scholar 

  17. Y. Guo, X. Jian, L. Zhang, C. Mu, L. Yin, J. Xie, N. Mahmood, S. Dou, R. Che, L. Deng, Chem. Eng. J. 384, 123371 (2020)

    CAS  Google Scholar 

  18. J. Jang, Y. Chiu, Appl. Therm. Eng. 27, 1883 (2007)

    Google Scholar 

  19. R. Darula, S. Sorokin, J. Sound. Vib. 333, 3266 (2014)

    Google Scholar 

  20. H. Chen, Q. Zhao, Y. Wang, S. Mu, H. Cui, J. Wang, T. Kong, X. Du, A.C.S. Appl, Mater. Interface 11, 15927 (2019)

    CAS  Google Scholar 

  21. F. Claeyssen, N. Lhermet, R.L. Letty, P. Bouchilloux, J. Alloys Compd. 258, 73 (1997)

    Google Scholar 

  22. R. Yan, B. Wang, Q. Yang, F. Liu, S. Cao, W. Huang, IEEE Trans. Appl. Supercond. 14, 1914 (2004)

    Google Scholar 

  23. Y. Yang, X. Liu, T. Chen, F. Yang, D. Xiang, Power Syst. Technol. 36, 26 (2012)

    CAS  Google Scholar 

  24. P.K. Jha, P.A. Jha, P. Kumar, K. Asokan, R.K. Dwivedi, J. Mater. Sci. Mater. Electron. 25, 2697 (2014)

    Google Scholar 

  25. L.R. Nerone, A.H. Qureshi, in IEEE Power Electronics Specialists Conference (2002)

  26. M. Zhao, G. Xu, Autom. Electr. Power Syst. 41, 63 (2017)

    Google Scholar 

  27. D. Chen, B. Hou, Z. Feng, B. Bai, IEEE Trans. Magn. 55, 1 (2019)

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China Projects (61803060) and (51705056) and Innovation Team Project of Chongqing Education Committee (CXTDX201601019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingmou Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Wu, J., Jiang, F. et al. Electromagneto-mechanical numerical analysis and experiment of transformer influenced by DC bias considering core magnetostriction. J Mater Sci: Mater Electron 31, 16420–16428 (2020). https://doi.org/10.1007/s10854-020-04194-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04194-w

Navigation