Skip to main content
Log in

Preparation, electrical, thermal and mechanical properties of black lithium tantalate crystal wafers

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, the effect of surface reduction treatment on the electrical, thermal and mechanical properties of Lithium tantalate (LiTaO3, LT) crystal wafers was investigated by comparing congruent Lithium tantalate (CLT) crystal wafers with deep-reduction black Lithium tantalate (BLT) crystal wafers using a mixture of high-purity aluminium powder and silicon powder as reducing agents. The structural changes of reduced wafers are discussed by XRD. The electrical conductivity of BLT wafers is 6.27 × 10–12 (Ω cm)−1, which is four orders of magnitude higher than the CLT crystal wafers. The Curie temperature and the thermal stability are basically the same with CLT crystal wafers, and the specific heat and hardness are reduced. The data show that high temperature annealing before reduction is conducive to the stress release of CLT crystal wafers, the blackening effect is more easily achieved, and the treated BLT wafer is more anti-static. The results show that the reduction treatment can obviously improve the conductivity of the wafer, so it is easier to improve and eliminate the discharge phenomenon caused by pyroelectric effects in the process of device preparation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Y. Ma, X. Huang, Y. Song, W. Hang, T. Zhang, Materials 12, 1683 (2019)

    CAS  Google Scholar 

  2. W. Hang, X. Huang, M. Liu, Y. Ma, Materials 12, 4213 (2019)

    CAS  Google Scholar 

  3. Y. Ma, X.W. Huang, Y.X. Song, W. Hang, J.L. Yuan, T.H. Zhang, Materials 12, 2799 (2019)

    CAS  Google Scholar 

  4. X. Gong, M. Fang, G. Fei, M. Liu, F. Li, G. Shang, L. Zhang, RSC Adv. 5, 31615–31621 (2015)

    CAS  Google Scholar 

  5. T. Yan, F. Zheng, Y. Yu, S. Qin, H. Liu, J. Wang, D. Yu, J. Appl. Cryst. 44, 158–162 (2011)

    CAS  Google Scholar 

  6. T. Yan, H. Liu, J. Wang, F. Zheng, S. Yao, Z. Xia, J. Wu, J. Alloy. Compd. 497, 412–415 (2010)

    CAS  Google Scholar 

  7. J. Wu, Z. Chen, R.K. Choubey, C. Lan, Mater. Chem. Phys. 133, 813–817 (2012)

    CAS  Google Scholar 

  8. T. Yan, N. Ye, L. Xu, Y. Sang, Y. Chen, W. Song, X. Long, J. Wang, H. Liu, J. Phys. D: Appl. Phys. 49, 195005 (2016)

    Google Scholar 

  9. A.V. Yatsenko, M.N. Palatnikov, N.V. Sidorov, A.S. Pritulenko, S.V. Evdokimov, Phys. Solid State 57, 1547–1550 (2015)

    CAS  Google Scholar 

  10. Z.Q. Liang, S.B. Li, Z.J. Liu, Y.D. Jiang, W.Z. Li, T. Wang, J. Wang, J. Mater. Sci. Mater. Electron. 26, 5400–5404 (2015)

    CAS  Google Scholar 

  11. E.M. Standifer, D.H. Jundt, R.G. Norwood, P.F. Bordui, Proceedings of the Annual IEEE International Frequency Control Symposium (IEEE, Pasadena, 1998), pp. 470–472

    Google Scholar 

  12. Y. Long, M. Yu, H. Li, Z. Shi, L. Wang, Y. Ding, Y. Xu, Z. Wu, Piezoelectrics Acoustooptics 41, 340–343 (2019)

    Google Scholar 

  13. P.F. Bordui, D.H. Jundt, E.M. Standifer, R.G. Norwood, J. Appl. Phys. 85, 3766–3769 (1999)

    CAS  Google Scholar 

  14. T. Yan, S. Yao, H. Liu, J. Wang, Z. Zuo, Z. Xia, Chinese J. Rare Metal. 33, 713–717 (2009)

    CAS  Google Scholar 

  15. X.F. Zhang, B. Liang, W. Zhou, Mater. China 33, 58–60 (2011)

    CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by the National Natural Science Foundation of China, grant number 61965001 and 11864001; the Ningxia Province Key Research and Development Program, grant number 2018BEE03015; the Natural Science Foundation of Ningxia, grant number 2018AAC03118 and 2019AAC03103; the Ningxia first-class discipline and scientific research projects (electronic science and technology), grant number NXYLXK2017A07. The authors thank the Key Laboratory of North Minzu University (Physics and Photoelectric Information Functional Materials Sciences and Technology), the Ningxia advanced intelligent perception control innovation team, the Ningxia acoustooptic-crystals industrialization Innovation team and the Ningxia new solid electronic materials and Devices research and development innovation team.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuefeng Xiao.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest. The funders had a role in the collection, analyses or interpretation of data.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, X., Zhang, H. & Zhang, X. Preparation, electrical, thermal and mechanical properties of black lithium tantalate crystal wafers. J Mater Sci: Mater Electron 31, 16414–16419 (2020). https://doi.org/10.1007/s10854-020-04193-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04193-x

Navigation