Skip to main content
Log in

Influence of phase transformation on structure–property relationship in quaternary In10Sb10Ag10Se70 chalcogenide films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This work reports the effect of thermal annealing (353–413 K) on structure and physical properties of thermally evaporated In10Ag10Sb10Se70 chalcogenide films. The samples were characterized by X-ray diffraction, transmission electron microscopy, TEM, Raman spectroscopy, optical absorption and photoconductivity measurements. Thermal annealing favours amorphous to polycrystalline structure transition with the growth of Se, AgInSe2 and AgSbSe2 phases. A significant change in position/shape of Raman bands upon annealing has been observed. The indirect optical gap decreases from 1.44 to 0.68 eV while tailing parameter increases with annealing. Photosensitivity decreases from 29.3 to 14.2 with annealing temperature. The decay of photocurrents is well fitted to stretched exponential function; the value of decay time constant increases while local minimum value of dispersion parameter at 353 K has been observed. These results are explained on the basis of amorphous crystalline phase transformation in chalcogenides and are important for developing new materials for emerging technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A.L. Greer, N. Mathur, Nature 437(7063), 1246–1247 (2005)

    CAS  Google Scholar 

  2. W. Zhang, R. Mazzarello, M. Wuttig et al., Nat. Rev. Mater. 4, 150–168 (2019)

    CAS  Google Scholar 

  3. J.M. Harbold, F.O. Ilday, F.W. Wise et al., IEEE Photon. Technol. Lett. 14(6), 822–824 (2002)

    Google Scholar 

  4. D. Lencer, M. Salinga, B. Grabowski et al., Nat. Mater. 7(12), 972–977 (2008)

    CAS  Google Scholar 

  5. M. Frumar, T. Wagner, Curr. Opin. Solid State Mater. Sci. 7(2), 117–126 (2003)

    CAS  Google Scholar 

  6. A. Srivastava, N. Chandel, N. Mehta, J. Therm. Anal. Calorim. 128(2), 907–914 (2017)

    CAS  Google Scholar 

  7. A.S. Hassanien, I. Sharma, J. Alloy. Compd. 798, 750–763 (2019)

    CAS  Google Scholar 

  8. P. Singh, P. Sharma, V. Sharma et al., Semicond. Sci. Technol. 32, 045015 (2017)

    Google Scholar 

  9. A. Zeidler, P.S. Salmon, D.A.J. Whittaker et al., R. Soc. Open Sci. 5(1), 171401 (2018)

    Google Scholar 

  10. R. Sharma, S. Sharma, P. Kumar et al., J. Non Cryst. Solids 472, 70–74 (2017)

    CAS  Google Scholar 

  11. D.Y. Choi, A. Wade, S. Madden et al., Phys. Procedia 48, 196–205 (2013)

    CAS  Google Scholar 

  12. A.F. Al-Shawabkeh, M.M.A. Imran, Mater. Sci. Semicond. Proc. 16(3), 1029–1034 (2013)

    CAS  Google Scholar 

  13. S. Sharma, R. Sharma, P. Kumar et al., Appl. Phys. A 124, 357 (2018)

    Google Scholar 

  14. A. Srivastava, S.N. Tiwari, J.K. Lal et al., Glass Phys. Chem. 45(2), 111–118 (2019)

    CAS  Google Scholar 

  15. R. Naik, A.K. Behera, A. Aparimita et al., Phase Transit. 92(1), 65–78 (2019)

    Google Scholar 

  16. H. Nyakotyo, T. Sathiaraj, E. Muchuweni, Opt. Laser Technol. 92, 182–188 (2017)

    CAS  Google Scholar 

  17. L.I. Maissel, R. Glang, Handbook of Thin Film Technology (McGraw Hill, New York, 1980)

    Google Scholar 

  18. R. Anuroop, B. Pradeep, J. Alloy. Compd. 702, 432–441 (2017)

    CAS  Google Scholar 

  19. G. Williamson, R. Smallman, Philos. Mag. 1(1), 34–46 (1956)

    CAS  Google Scholar 

  20. S. Chavhan, S. Senthilarasu, J. Lee et al., J. Phys. D Appl. Phys. 41(16), 165502 (2008)

    Google Scholar 

  21. A. Darwish, M. El-Nahass, M. Bahlol, Appl. Surf. Sci. 276, 210–216 (2013)

    CAS  Google Scholar 

  22. M. Abdel-Rahim, M. Hafiz, A. Mahmoud, Solid State Sci. 48, 125–132 (2015)

    CAS  Google Scholar 

  23. M. Gorman, S. Solin, Solid State Commun. 18(11), 1401–1404 (1976)

    CAS  Google Scholar 

  24. A. Harizi, M.B. Rabeh, F. Laatar et al., Mater. Res. Bull. 79, 52–62 (2016)

    CAS  Google Scholar 

  25. G. Lucovsky, A. Mooradian, W. Taylor et al., Solid State Commun. 5(2), 113–117 (1967)

    CAS  Google Scholar 

  26. Z. Ivanova, E. Cernoskova, V. Vassilev et al., Mater. Lett. 57(5), 1025–1028 (2003)

    CAS  Google Scholar 

  27. S.N. Yannopoulos, K.S. Andrikopoulos, J. Chem. Phys. 121, 4747–4758 (2004)

    CAS  Google Scholar 

  28. E. Baudet, C. Cardinaud, A. Girard et al., J. Non Cryst. Solids 444, 64–72 (2016)

    CAS  Google Scholar 

  29. A. Shongalova, M.R. Correia, B. Vermang et al., MRS Commun. 8(3), 865–870 (2018)

    CAS  Google Scholar 

  30. M.I. Abd-Elrahman, A.Y. Abdel-Latief, R.M. Khafagy et al., Spectrochim. Acta A 137, 29–32 (2015)

    CAS  Google Scholar 

  31. A. Abu-Sehly, A. Soltan, Appl. Surf. Sci. 199(1), 147–159 (2002)

    CAS  Google Scholar 

  32. M. Becker, H. Fan, Phys. Rev. 76(10), 1530 (1949)

    Google Scholar 

  33. K.L. Chopra, Thin Film Phenomena (McGraw-Hill, New York, 1969)

    Google Scholar 

  34. R. Sharma, S. Sharma, P. Kumar et al., J. Non Cryst. Solids 459, 13–17 (2017)

    CAS  Google Scholar 

  35. J. Tauc, in Amorphous and Liquid Semiconductors, ed. by J. Tauc (Springer, Germany, 1974), p. 159

    Google Scholar 

  36. M. Hafiz, A. Othman, M. El-Nahass et al., Phys. B 390(1), 348–355 (2007)

    CAS  Google Scholar 

  37. M. Ibrahim, M.A. El-Rahiem, Phys. Scr. 38(5), 762 (1988)

    CAS  Google Scholar 

  38. M.M. Imran, O.A. Lafi, M. Abu-Samak, Vacuum 86(10), 1589–1594 (2012)

    CAS  Google Scholar 

  39. N.F. Mott, E.A. Davis, Electronic Processes in Non-Crystalline Materials (Clarendon, Oxford, 1979)

    Google Scholar 

  40. M. Abd-Elrahman, M. Hafiz, A. Qasem et al., Appl. Phys. A 122(8), 772 (2016)

    Google Scholar 

  41. F. Al-Agel, Vacuum 85(9), 892–897 (2011)

    CAS  Google Scholar 

  42. F. Al-Agel, E. Al-Arfaj, F. Al-Marzouki et al., Mater. Sci. Semicond. Proc. 16(3), 884–892 (2013)

    CAS  Google Scholar 

  43. M.R.A. Bhuiyan, M.A. Azad, S.M.F. Hasan, Ind. J. Pure Appl. Phys. 49(3), 180–185 (2011)

    CAS  Google Scholar 

  44. A. Diab, M. Wakkad, E.K. Shokr et al., Optik 126(19), 1855–1860 (2015)

    CAS  Google Scholar 

  45. A.I. Khudiar, M. Zulfequar, Z.H. Khan, Mater. Sci. Semicond. Proc. 16(6), 1791–1796 (2013)

    CAS  Google Scholar 

  46. A. Kumar, R. Misra, S. Tripathi, Semicond. Sci. Technol. 4(12), 1151 (1989)

    CAS  Google Scholar 

  47. A. Abdel-Aal, Phys. B 392(1), 180–187 (2007)

    CAS  Google Scholar 

  48. P. Kumar, J. Kumar, M. Ahmad et al., Appl. Phys. A 90(3), 469–473 (2008)

    CAS  Google Scholar 

  49. A. Andriesh, V. Arkhipov, M. Iovu et al., Solid State Commun. 48(12), 1041–1043 (1983)

    CAS  Google Scholar 

  50. M.S. Iovu, S.D. Shutov, M. Popescu, J. Non Cryst. Solids 299, 924–928 (2002)

    Google Scholar 

  51. P. Kumar, R. Thangaraj, J. Phys. Cond. Matter. 21(37), 375102 (2009)

    Google Scholar 

  52. M. Iovu, E. Colomeico, J. Optoelectron. Adv. Mater. 5(5), 1209–1214 (2003)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Praveen Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, R., Sharma, S., Kumar, P. et al. Influence of phase transformation on structure–property relationship in quaternary In10Sb10Ag10Se70 chalcogenide films. J Mater Sci: Mater Electron 31, 16398–16405 (2020). https://doi.org/10.1007/s10854-020-04191-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04191-z

Navigation