Skip to main content

Advertisement

Log in

Progress in materials and processes of multilayer power inductors

  • Review
  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Passive components have continuously improved in recent years in miniaturization, multi-functionality, performance, and energy efficiency. The requirements of portable devices, home appliances, automobiles, industrial equipment, and other products demand these improvements. The passive components used in these products have had to continuously become smaller and thinner to meet ever-higher performance requirements. During the last several years, the demand for power inductors with high-rated current has increased rapidly due to the diversification and reduction in operating voltage in portable electronic devices. The low-temperature firing NiCuZn ferrites and Fe-based alloy powders for inductors have attracted much attention in recent years, while the review of the materials and processes for multilayer power inductors has not been described in the open literature to our best knowledge. Therefore, this article is aimed to deliver an overview on the progress of the multilayer power inductors, from materials and processes' point of view.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Copyright © 2006, Springer

Fig. 6

Copyright © 2006, Springer

Fig. 7

Copyright © 2006, Springer

Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig.19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43

Similar content being viewed by others

References

  1. https://product.tdk.com/info/en/techlibrary/archives/techjournal/vol13_mlp2012-v/contents02.html.

  2. https://www.murata.com/en-eu/products/inductor/power/learn/basic_01/basic_01_3

  3. E.C. Snelling, Soft Ferrites: Properties and Applications, 2nd edn. (Butterworths, London, 1988)

    Google Scholar 

  4. T. Nomura and A. Nakano, Proceedings of the Sixth International Conference on Ferrites, Tokyo, 1198–1201 (1992)

  5. T. Nakamura, Y. Okano, J. Phys. IV 7, C191–C192 (1997)

    Google Scholar 

  6. A. Nakano, T. Nomura, Ceram. Trans. 97, 285–304 (1999)

    CAS  Google Scholar 

  7. J. Töpfer, J. Mürbe, J. Electroceram. 16, 199–205 (2006)

    Google Scholar 

  8. J. Mürbe, J. Töpfer, J. Electroceram. 15, 215–221 (2005)

    Google Scholar 

  9. J. Töpfer, J. Mürbe, A. Angermann, S. Kracunovska, Int. J. Appl. Ceram. Technol. 3, 455–462 (2006)

    Google Scholar 

  10. J. Mürbe, J. Töpfer, J. Magn. Magn. Mater. 324, 578–583 (2012)

    Google Scholar 

  11. Q. Luo, H. Su, X. Tang, Z. Xu, Y. Li, Y. Jing, Ceram. Int. 44, 16005–16009 (2018)

    CAS  Google Scholar 

  12. P. Wang, Y. Li, Y. Jing, Z. Xu, X. Tang, J. Mater. Sci. 30, 21004–21010 (2019)

    CAS  Google Scholar 

  13. L. Guo, J. Li, Y. Yang, G. Wang, Y.H. Rao, G.W. Gan, H.W. Zhang, J. Mater. Sci. 30, 5437–15443 (2019)

    Google Scholar 

  14. C.X. Ouyang, S. Xiao, J. Zhu, H. Wang, Adv. Appl. Ceram. 115, 1–7 (2016)

    Google Scholar 

  15. H.I. Hsiang, J.F. Chueh, Inter. J. Appl. Ceram. Technol. 12, 1008–1015 (2015)

    CAS  Google Scholar 

  16. H. Su, X. Tang, H. Zhang, Y. Jing, Z. Zhong, J. Magn. Magn. Mater. 323, 592–595 (2011)

    CAS  Google Scholar 

  17. https://product.tdk.com/info/en/techlibrary/archives/techjournal/vol10_mlz/contents04.html

  18. T.Y. Byun, S.C. Byeon, K.S. Hong, IEEE. Trans. Magn. 35, 3445–3447 (1999)

    CAS  Google Scholar 

  19. Z. Yue, J. Zhou, Z. Gui, L. Li, J. Magn. Magn. Mater. 264, 258–263 (2003)

    CAS  Google Scholar 

  20. O. Mirzaee, A. Shafyei, M.A. Golozar, H. Shokrollahi, J. Alloys Compd. 461, 312–315 (2008)

    CAS  Google Scholar 

  21. J. Hu, M. Yan, W. Luo, Phys. B 368, 251–260 (2005)

    CAS  Google Scholar 

  22. T.T. Ahmed, I.Z. Rahman, M.A. Rahman, J. Mater. Process. Technol. 153–154, 797–803 (2004)

    Google Scholar 

  23. H. Su, H. Zhang, X. Tang, Z. Zhong, Y. Jing, Mater. Sci. Eng. B 162, 22–25 (2009)

    CAS  Google Scholar 

  24. H.I. Hsiang, C.S. Hsi, R.L. Lin, C.Y. Chiang, Mater. Chem. Phys. 151, 295–300 (2015)

    CAS  Google Scholar 

  25. K.W. Wagner, Ann. Phys. 40, 817–855 (1913)

    Google Scholar 

  26. H.I. Hsiang, C.S. His, C.Y. Tsai, L.T. Mei, Ceram. Int. 41, 4140–4144 (2015)

    CAS  Google Scholar 

  27. M.A. Ahmed, M.A. El Hiti, J. Phys. III France 5, 775–781 (1995)

    CAS  Google Scholar 

  28. R.N. Bhowmik, R. Ranganathan, B. Ghosh, S. Kumar, S. Chattopadhyay, J. Alloys Compd. 456, 348–352 (2008)

    CAS  Google Scholar 

  29. H.I. Hsiang, Y.L. Liu, J. Alloys Compd. 472, 516–520 (2009)

    CAS  Google Scholar 

  30. H.I. Hsiang, L.T. Mei, C.S. Hsi, Y.L. Liu, F.S. Yen, J. Alloys Compd. 502, 163–168 (2010)

    CAS  Google Scholar 

  31. H.I. Hsiang, J.L. Wu, J. Magn. Magn. Mater. 374, 367–371 (2015)

    CAS  Google Scholar 

  32. H.I. Hsiang, J.L. Wu, Inter. J. Appl. Ceram. Technol. 12, 1065–1070 (2015)

    CAS  Google Scholar 

  33. A. Barba, C. Clausell, J.C. Jarque, M. Monzó, J. Eur. Ceram. Soc. 31, 2119–2128 (2011)

    CAS  Google Scholar 

  34. M. Fujimoto, J. Am. Ceram. Soc. 77, 2873–2878 (1994)

    CAS  Google Scholar 

  35. L. Schramm, G. Behr, W. Loser, K. Wetzig, J. Phase Equilib. Diff. 26, 605–612 (2005)

    CAS  Google Scholar 

  36. H. Naghib zadeh, G. Oder, J. Hesse, T. Reimann, J. Töpfer, T. Rabe, J. Electroceram. 37, 100–109 (2016)

    CAS  Google Scholar 

  37. H.I. Hsiang, W.C. Kuo, C.S. Hsi, J. Eur. Ceram. Soc. 37, 2123–2128 (2017)

    CAS  Google Scholar 

  38. L. Huan, X. Tang, H. Su, H. Zhang, Y. Jing, J. Mater. Sci. 26, 3275–3281 (2015)

    CAS  Google Scholar 

  39. S. Yan, L. Dong, Z. Chen, X.N. Wang, Z. Feng, J. Magn. Magn. Mater. 353, 47–50 (2014)

    CAS  Google Scholar 

  40. L. Huan, X. Tang, H. Su, H. Zhang, Y. Jing, B. Liu, IEEE Trans. Magn. 50, 2006104 (2014)

    Google Scholar 

  41. P. Wang, X. Tang, H. Zhang, S. Che, Y. Li, Y. Jing, J. Alloys Compd. 803, 812–817 (2019)

    CAS  Google Scholar 

  42. H. Su, C. Zhao, Y. Li, Y. Jing, H. Zhang, X. Tang, Mater. Res. Bull. 107, 37–40 (2018)

    CAS  Google Scholar 

  43. https://www.sunlordinc.com/UploadFiles/2014/03/19151140902FCA6B.pdf

  44. A. Albrecht, J. Botiov, M. Fischer, K.H. Drüe, M. Hintz, and H. Wurmus, 14th European Microelectronics and Packaging Conference & Exhibition (2003) pp. 23–25.

  45. H.D. Rowland, W.P. King, J. Micromech. Microeng. 4, 1625–1563 (2004)

    Google Scholar 

  46. J.M. Li, C. Liu, H. Qiao, L. Zhu, G. Chen, X.D. Dai, J. Micromech. Microeng. 18, 015008 (2008)

    Google Scholar 

  47. P.P. Shiu, G.K. Knopf, M. Ostojic, S. Nikumb, J. Micromech. Microeng. 18, 025012 (2008)

    Google Scholar 

  48. D. Andrijasevic, W. Smetana, J. Zehetner, S. Zoppel, W. Brenner, Microelectron. Eng. 84, 1198–1201 (2007)

    CAS  Google Scholar 

  49. T. Rabe, P. Kuchenbecker, B. Schulz, M. Schmidt, Int. J. Appl. Ceram. Technol. 4, 38–46 (2007)

    CAS  Google Scholar 

  50. X.C. Shan, H.P. Maw, R.T. Tjeung, S.H. Ling, C.W. Lu, R. Jachowicz, Microsyst. Technol. 14, 1405–1409 (2008)

    CAS  Google Scholar 

  51. H.I. Hsiang, C.C. Chen, W.C. Kuo, Ceram. Inter. 43, 13853–13859 (2017)

    CAS  Google Scholar 

  52. Multi-layered ferrite substrate for DC–DC converters. Hitach Metal Techol. Rev. 25, 65 (2009)

  53. R.T. Hsu, J.H. Jean, Y.Y. Hung, J. Am. Ceram. Soc. 91, 2051–2054 (2008)

    CAS  Google Scholar 

  54. T.J. Garino, H.K. Bowen, J. Am. Ceram. Soc. 73, 251 (1990)

    CAS  Google Scholar 

  55. J.C. Chang, J.H. Jean, J. Am. Ceram. Soc. 92, 1946–1950 (2009)

    CAS  Google Scholar 

  56. H. Thust, M.Hintz, A. Albrecht, in SMTA Pan Pacific Conference, 2004, Hawaii, USA

  57. H.I. Hsiang, J.F. Chueh, Inter. J. Appl. Ceram. Technol. 12(S2), E194–E201 (2015)

    CAS  Google Scholar 

  58. L.P. Lefebvre, S. Pelletier, C. Gélinas, J. Magn. Magn. Mater. 176, L93–L96 (1997)

    CAS  Google Scholar 

  59. L.F. Fan, H.I. Hsiang, J.J. Hung, Appl. Surf. Sci. 433, 133–138 (2018)

    CAS  Google Scholar 

  60. A.H. Taghvaei, H. Shokrollahi, K. Janghorban, J. Alloys Compd. 481, 681–686 (2009)

    CAS  Google Scholar 

  61. H.Y. Jiang, W. Zhong, X.L. Wu, N.J. Tang, W. Liu, Y.W. Du, J. Alloys Compd. 384, 264–267 (2004)

    CAS  Google Scholar 

  62. H.I. Hsiang, L.F. Fan, J.J. Hung, J. Magn. Magn. Mater. 447, 1–8 (2018)

    CAS  Google Scholar 

  63. I. Hemmati, H.R. Madaah Hosseini, A. Kianvash, J. Magn. Magn. Mater. 305, 147–151 (2006)

    CAS  Google Scholar 

  64. S. Nakaharaa, E.A. Périgoa, Y. Pittini-Yamada, Y. de Hazan, T. Graule, Acta Mater. 58, 5695–5703 (2010)

    Google Scholar 

  65. H.I. Hsiang, L.F. Fan, K.T. Ho, J. Magn. Magn. Mater. 444, 1–6 (2017)

    CAS  Google Scholar 

  66. H.I. Hsiang, L.F. Fan, K.T. Ho, IEEE Trans. Magn. 54, 2000407 (2018)

    Google Scholar 

  67. Y.P. Wu, H.Y. Chiang, H.I. Hsiang, J. Mater. Sci. 30, 8080–8088 (2019)

    CAS  Google Scholar 

  68. Y.P. Wu, H.Y. Chiang, H.I. Hsiang, AIP Adv. 8, 085006 (2018)

    Google Scholar 

  69. Y.P. Wu, The AgCrO2 formation mechanism and prevention methods during co-firing silver inner electrode and Fe-Si-Cr alloy powders in metal multilayer chip power inductor. Ph.D. dissertation, National Cheng Kung University (2019)

Download references

Acknowledgements

This work was financially co-sponsored by the Ministry of Science and Technology of Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hsing-I. Hsiang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hsiang, HI. Progress in materials and processes of multilayer power inductors. J Mater Sci: Mater Electron 31, 16089–16110 (2020). https://doi.org/10.1007/s10854-020-04188-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04188-8

Navigation