Skip to main content
Log in

Influence of Zn2+ doping towards the structural, magnetic, and dielectric properties of NiFe2O4 composite

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The present work is aimed to study the changes in characteristics of nickel ferrites followed by the zinc doping and for that, the nanocrystalline Ni–Zn ferrites (Ni1−xZnxFe2O4: x = 0, x = 0.2 and x = 0.4) were prepared via sol–gel auto combustion method and by annealing at subsequent temperature. The physical characterization studies of the final composite provided that the lattice structure of Zn2+ substituted at Ni sites confirms for the single-phase ferrite with spinel structure got investigated at room temperature (RT) with functional, morphological as well as temperature-dependent magnetic and dielectric properties. The magnetic properties imply that the distribution of cations at the lattice sites suggests that the magnetization is getting increased with a decrease of temperature from RT to lower temperature in a field cooling process and is due to the strong dipolar magnetostatic interactions between the individual magnetic moments, which also affirms that the magnetization decreases with a decrease of Ni concentration. The coercively extracted from isothermal magnetization curves attributed to the single domain nature at RT. Further, the dielectric constant (ε′) and dielectric loss (tan δ) are also examined and found to be strongly dependent on the function of frequency and temperature. The change in ε′ and tan δ demonstrated that the dispersion due to the Maxwell–Wagner interfacial polarization and is in a good agreement with Koop’s theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S. Feng, W. Yang, Z. Wang, Mater. Sci. Eng. B. 176, 1509 (2011)

    CAS  Google Scholar 

  2. E. Perez, C. Gomez-Polo, S. Larumbe, J.I. Pérez-Landazabal, V. Sagredo, Rev. Mex. de Fis. 58, 104 (2012)

    CAS  Google Scholar 

  3. H.L. Andersen, M. Christensen, Nanoscale. 7, 3481 (2015)

    CAS  Google Scholar 

  4. L.T. Lu, N.T. Dung, L.D. Tung, C.T. Thanh, O.K. Quy, N.V. Chuc, S. Maenosono, N.T. Thanh, Nanoscale. 46, 19596 (2015)

    Google Scholar 

  5. H. Kavas, A. Baykal, M.S. Toprak, Y. Koseoglu, M. Sertkol, B. Aktas, J. Alloys Compd. 479, 49 (2009)

    CAS  Google Scholar 

  6. Y.Q.H. Yang, N. Yang, Y. Fan, H. Zhu, G. Zou, Mater. Lett. 60, 3522–3548 (2006)

    Google Scholar 

  7. P.C. Dorsey, P. Lubitz, D.B. Chrisey, J.S. Horwitz, J. Appl. Phys. 85, 6338–6345 (1999)

    Google Scholar 

  8. M. Sertkol, Y. Koseoglu, A. Baykal, H. Kavas, A.C. Basaran, J. Magn. Magn. Mater. 321, 157 (2009)

    CAS  Google Scholar 

  9. S.G. Doh, E.B. Kim, B.H. Lee, J.H. Oh, J. Magn. Magn. Mater. 272, 2240 (2004)

    Google Scholar 

  10. N. Ranvah, Y. Melikhov, D.C. Jiles, J.E. Snyder, A.J. Moses, P.I. Williams, S.H. Song, J. Appl. Phys. 103, 07E506 (2008)

    Google Scholar 

  11. L. Kumar, M. Kar, J. Magn. Magn. Mater. 323, 2042 (2011)

    CAS  Google Scholar 

  12. S. Kumar, P. Kumar, V. Singh, U.K. Mandal, R.K. Kotnala, J. Magn. Magn. Mater. 379, 50 (2015)

    CAS  Google Scholar 

  13. P. Sivaprakash, A. Nitthin Ananth, V. Nagarajan, S.P. Jose, S. Arumugam, Mater. Res. Bull. 95, 17 (2017)

    CAS  Google Scholar 

  14. E.W. Gorter, Philips Res. Rep. 9, 295 (1954)

    CAS  Google Scholar 

  15. M.A. Gabal, R.M. El-Shishtawy, Y.M. AlAngari, J. Magn. Magn. Mater. 324, 2258–2264 (2012)

    CAS  Google Scholar 

  16. T. Tatarchuk, M. Bououdina, W. Macyk, O. Shyichuk, N. Paliychuk, I. Yaremiy, B. Al-Najar, M. Pacia, Nanoscale Res. Lett. 12, 141 (2017)

    Google Scholar 

  17. M. Srivastava, S. Chaubey, A.K. Ojha, Mater. Chem. Phys. 118, 174 (2009)

    CAS  Google Scholar 

  18. T. Tangcharoen, A. Ruangphanit, W. Pecharapa, Ceram. Int. 39, S239 (2013)

    CAS  Google Scholar 

  19. S.E. Shirsath, B.G. Toksha, R.H. Kadam, S.M. Patange, D.R. Mane, G.S. Jangam, A. Ghasemi, J. Phys. Chem. Solids. 71, 1669 (2010)

    CAS  Google Scholar 

  20. J. Mao, X. Hou, F. Huang, K. Shen, K.H. Lam, Q. Ru, S. Hu, J. Alloys Compd. 676, 265–274 (2016)

    CAS  Google Scholar 

  21. R. Sharma, S. Singhal, Phys. B 414, 83–90 (2013)

    CAS  Google Scholar 

  22. A.S. Hameed, H. Bahiraei, M.V. Reddy, M.Z. Shoushtari, J.J. Vittal, C.K. Ong, B.V.R. Chowdari, ACS Appl Mater. Interfaces 6, 10744–10753 (2014)

    CAS  Google Scholar 

  23. S.S. Kumbhar, M.A. Mahadik, V.S. Mohite, Y.M. Hunge, K.Y. Rajpure, C.H. Bhosale, Mater. Res. Bull. 67, 47 (2015)

    CAS  Google Scholar 

  24. A. Ahlawat, V.G. Sathe, J. Raman Spectrosc. 42, 1087 (2011)

    CAS  Google Scholar 

  25. R.G. Gupta, R.G. Mendiratta, J. Appl. Phys. 48, 2998 (1977)

    CAS  Google Scholar 

  26. A.C.F.M. Costa, V.J. Silva, D.R. Cornejo, M.R. Morelli, R.H.G.A. Kiminami, L. Gama, J. Magn. Magn. Mater. 320, e370 (2008)

    CAS  Google Scholar 

  27. V. Manikandan, N. Priyadharsini, S. Kavita, J. Chandrasekaran, Superlattice. Microst. 109, 648 (2017)

    CAS  Google Scholar 

  28. S.I. El-Dek, Philos. Mag. Lett. 90, 233 (2010)

    CAS  Google Scholar 

  29. K. Manikandan, S. Dhanuskodi, A.R. Thomas, N. Maheswari, G. Muralidharan, D. Sastikumar, RSC. Adv. 6, 90559 (2016)

    CAS  Google Scholar 

  30. S. Arumugam, P. Sivaprakash, A. Dixit, R. Chaurasiya, L. Govindaraj, M. Sathiskumar, S. Chatterjee, R. Suryanarayanan, Sci. Rep. 9, 3200 (2019)

    CAS  Google Scholar 

  31. P. Sivaprakash, A. Nitthin Ananth, V. Nagarajan, R. Parameshwari, S. Arumugam, S.P. Jose, S. Esakki Muthu, Mater. Chem. Phys. 248, 122922 (2020)

    CAS  Google Scholar 

  32. R.S. Yadav, I. Kuřitka, J. Vilcakova, J. Havlica, J. Masilko, L. Kalina, J. Tkacz, J. Švec, V. Enev, M. Hajdúchová, Adv. Nat. Sci. 8, 045002 (2017)

    Google Scholar 

  33. Y.D. Kolekar, L.J. Sanchez, C.V. Ramana, J. Appl. Phys. 115, 144106 (2014)

    Google Scholar 

  34. C.V. Ramana, A. Mauger, F. Gendron, C.M. Julien, K. Zaghib, J. Power Sources. 187, 555 (2009)

    CAS  Google Scholar 

  35. R.V. Mangalaraja, S. Ananthakumar, P. Manohar, F.D. Gnanam, J. Magn. Magn. Mater. 253, 56 (2002)

    CAS  Google Scholar 

  36. D. Ravinder, K. Vijaya Kumar, Bull Mater. Sci. 24, 505 (2001)

    CAS  Google Scholar 

  37. S.S. Jadhav, S.E. Shirsath, B.G. Toksha, S.M. Patange, D.R. Shengule, K.M. Jadhav, Phys. B 405, 2610 (2010)

    CAS  Google Scholar 

  38. R. Nongjai, S. Khan, K. Asokan, H. Ahmed, I. Khan, J. Appl. Phys. 112, 084321 (2012)

    Google Scholar 

  39. A. Lakshman, P.S.V. Subba Rao, B. Parvatheeswara Rao, K.H. Rao, J. Phys. D 38, 673 (2005)

    CAS  Google Scholar 

  40. M. Mumtaz, L. Ali, M. Nasir Khan, M. Usman Sajid, J. Supercond. Nov. Magn. 29, 1181 (2016)

    CAS  Google Scholar 

  41. M.Z. Said, Matter. Lett. 34, 305 (1998)

    CAS  Google Scholar 

  42. R.V. Mangalaraja, P. Manohar, F.D. Gnanam, M. Awano, J. Mater. Sci. 39, 2037 (2004)

    CAS  Google Scholar 

Download references

Acknowledgements

Author P.S. would like to thank UGC-BSRRFSMS-SRF for the meritorious fellowship. The author S.A. acknowledges the funding agencies of DST (SERB, FIST, MES, ASEAN, and PURSE), RUSA, BRNS, and UGC-DAE Consortium for Scientific Research (Indore, Kolkata) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. Arumugam or S. Esakki Muthu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest with this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sivaprakash, P., Divya, S., Parameshwari, R. et al. Influence of Zn2+ doping towards the structural, magnetic, and dielectric properties of NiFe2O4 composite. J Mater Sci: Mater Electron 31, 16369–16378 (2020). https://doi.org/10.1007/s10854-020-04187-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04187-9

Navigation