Skip to main content
Log in

Thickness- and substrate-dependent magnetotransport properties of lanthanum–strontium manganite films with overstoichiometric manganese content

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Electrical and magnetoresistive properties of the La0.6Sr0.2Mn1.2Oδ (LSMO) films deposited on SrTiO3 single-crystalline and Al2O3 polycrystalline substrates by magnetron sputtering have been studied. The aim of the study is to understand the effect of substrate type on the thickness-dependent evolution of magnetotransport properties of the films of lanthanum–strontium manganites with overstoichiometric manganese content. It is shown that the decrease in the LSMO film thickness below 1000 nm causes the reduction of Curie temperature (TC) and magnetoresistance value at 300 K concomitant with the increase in electrical resistivity. At the same time, the dependence of electrical and magnetoresistance parameters on the substrate structure and type becomes stronger. It is found that TC of LSMOSTO films exceeds and resistivity is smaller than the respective parameters of LSMOAO films, and the difference grows with the decrease in the film thickness. All the results show that the behavior of the doped manganite films with overstoichiometric manganese content differs from that characteristic of stoichiometric in manganese films. These observations can be attributed to the effect of manganese excess on the film growth mechanism, making it different from the manganite films of other compositions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and material (data transparency)

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. X. Wang, C. Jin, P. Wang, X. Pang, W. Zheng, D. Zheng, Z. Li, R. Zheng, H. Bai, Appl. Phys. Lett. 115, 182405 (2019)

    Google Scholar 

  2. A.I. Tovstolytkin, I.V. Lezhnenko, O.I. Matviyenko, Solid State Phenom. 200, 754 (2003)

    Google Scholar 

  3. A.D. Souza, M. Daivajna, J. Supercond. Novel Magn. 33, 1781 (2020)

    CAS  Google Scholar 

  4. A.D. Souza, M.S. Murari, M.D. Daivajna, Phys. B 580, 411909 (2020)

    CAS  Google Scholar 

  5. M. Saleem, M.A. Dar, A. Mishra, J. Mater. Sci. Mater. Electron. 31, 8546 (2020)

    CAS  Google Scholar 

  6. A. Elghoul, A. Krichene, N. Chniba Boudjada, F. Fettar, F. Gay, W. Boujelben, J. Mater. Sci. Mater. Electron. 31, 7076 (2020)

    CAS  Google Scholar 

  7. X. Tang, S. Zhu, R. Wei, L. Hu, J. Yang, W. Song, J. Dai, X. Zhu, Y. Sun, Composites B 186, 107801 (2020)

    CAS  Google Scholar 

  8. W. Wang, J. Zhang, X. Shen, X. Guan, Y. Yao, J. Li, C. Gu, J. Sun, Y. Zhu, J. Tao, R. Yu, Phys. Rev. B 101, 024406 (2020)

    CAS  Google Scholar 

  9. Y. Wang, D. Zheng, Z. Wang, W. Zheng, C. Jin, H. Bai, J. Appl. Phys. 125, 164102 (2019)

    Google Scholar 

  10. X.L. Zeng, M.R. Koblischka, T. Karwoth, U. Hartmann, J. Magn. Magn. Mater. 475, 741 (2019)

    CAS  Google Scholar 

  11. T. Karwoth, X.L. Zeng, M.R. Koblischka, U. Hartmann, C. Chang, T. Hauet, J.M. Li, Solid State Commun. 290, 37 (2019)

    CAS  Google Scholar 

  12. A.I. Tovstolytkin, Y.M. Lytvynenko, A.V. Bodnaruk, O.V. Bondar, V.M. Kalita, S.M. Ryabchenko, Y.Y. Shlapa, S.O. Solopan, A.G. Belous, J. Magn. Magn. Mater. 498, 166088 (2020)

    CAS  Google Scholar 

  13. V.M. Kalita, A.I. Tovstolytkin, S.M. Ryabchenko, O.V. Yelenich, S.O. Solopan, A.G. Belous, Phys. Chem. Chem. Phys. 17, 18087 (2015)

    CAS  Google Scholar 

  14. V.M. Kalita, D.M. Polishchuk, D.G. Kovalchuk, A.V. Bodnaruk, S.O. Solopan, A.I. Tovstolytkin, S.M. Ryabchenko, A.G. Belous, Phys. Chem. Chem. Phys. 19, 27015 (2017)

    CAS  Google Scholar 

  15. Y. Shlapa, S. Solopan, A. Belous, A. Tovstolytkin, Nanoscale Res. Lett. 13, 1 (2018)

    CAS  Google Scholar 

  16. A. Kozlovskiy, I. Kenzhina, M. Zdorovets, Ceram. Int. 45, 8669 (2019)

    CAS  Google Scholar 

  17. V.A. Turchenko, A.V. Trukhanov, I.A. Bobrikov, S.V. Trukhanov, A.M. Balagurov, J. Surf. Investig. 9, 17 (2015)

    CAS  Google Scholar 

  18. D.-H. Kim, E.A. Vitol, J. Liu, S. Balasubramanian, D.J. Gosztola, E.E. Cohen, V. Novosad, E.A. Rozhkova, Langmuir 29, 7425 (2013)

    CAS  Google Scholar 

  19. L. Bubnovskaya, A. Belous, S. Solopan, A. Kovelskaya, L. Bovkun, A. Podoltsev, I. Kondtratenko, S. Osinsky, J. Nanopart. 2014, 1 (2014)

    Google Scholar 

  20. V.M. Kalita, A.F. Lozenko, S.M. Ryabchenko, A.A. Timopheeev, R.A. Trotsenko, I.A. Danilenko, T.E. Konstantinova, Low Temp. Phys. 34, 436 (2008)

    CAS  Google Scholar 

  21. A. Urushibara, Y. Moritomo, T. Arima, A. Asamitsu, G. Kido, Y. Tokura, Phys. Rev. B 51, 14103 (1995)

    CAS  Google Scholar 

  22. E. Dagotto, T. Hotta, A. Moreo, Phys. Rep. 344, 1 (2001)

    CAS  Google Scholar 

  23. K. Dörr, J. Phys. D 39, R125 (2006)

    Google Scholar 

  24. M.V. Zdorovets, A.L. Kozlovskiy, Surf. Coat. Technol. 383, 125286 (2020)

    CAS  Google Scholar 

  25. M.A. Almessiere, A.B. Trukhanov, Y. Slimani, K.Y. You, S.V. Trukhanov, E.L. Trukhanova, F. Esa, A. Sadaqat, K. Chaudhary, M. Zdorovets, A. Baykal, Nanomaterials 9, 202 (2019)

    CAS  Google Scholar 

  26. P. Orgiani, A.Y. Petrov, R. Ciancio, A. Galdi, L. Maritato, B.A. Davidson, Appl. Phys. Lett. 100, 042404 (2012)

    Google Scholar 

  27. J.Z. Sun, D.W. Abraham, R.A. Rao, C.B. Eom, Appl. Phys. Lett. 74, 3017 (1999)

    CAS  Google Scholar 

  28. S. Majumdar, H. Huhtinen, H.S. Majumdar, P. Paturi, J. Alloy. Compd. 512, 332 (2012)

    CAS  Google Scholar 

  29. M. Navasery, S.A. Halim, N. Soltani, G. Bahmanrokh, M. Erfani, S.K. Chen, K.P. Lim, M.M. Awang Kechik, J. Mater. Sci. Mater. Electron. 25, 1317 (2014)

    CAS  Google Scholar 

  30. A.M. Haghiri-Gosnet, J.P. Renard, J. Phys. D 36, R127 (2003)

    CAS  Google Scholar 

  31. A.J. Millis, T. Darling, A. Migliori, J. Appl. Phys. 83, 1588 (1998)

    CAS  Google Scholar 

  32. P. Dey, T.K. Nath, A. Taraphder, Appl. Phys. Lett. 91, 012511 (2007)

    Google Scholar 

  33. R.P. Borges, W. Guichard, J.G. Lunney, J.M.D. Coey, F. Ott, J. Appl. Phys. 89, 3868 (2001)

    CAS  Google Scholar 

  34. M. Angeloni, G. Balestrino, N.G. Boggio, P.G. Medaglia, P. Orgiani, A. Tebano, J. Appl. Phys. 96, 6387 (2004)

    CAS  Google Scholar 

  35. M. Huijben, L.W. Martin, Y.H. Chu, M.B. Holcomb, P. Yu, G. Rijnders, D.H.A. Blank, R. Ramesh, Phys. Rev. B 78, 094413 (2008)

    Google Scholar 

  36. T. Kanki, R.W. Li, Y. Naitoh, H. Tanaka, T. Matsumoto, T. Kawai, Appl. Phys. Lett. 83, 1184 (2003)

    CAS  Google Scholar 

  37. A. de Andrés, J. Rubio, G. Castro, S. Taboada, J.L. Martínez, J.M. Colino, Appl. Phys. Lett. 83, 713 (2003)

    Google Scholar 

  38. K. Daoudi, T. Tsuchiya, I. Yamaguchi, T. Manabe, S. Mizuta, T. Kumagai, J. Appl. Phys. 98, 013507 (2005)

    Google Scholar 

  39. O. Lebedev, G. van Tendeloo, S. Amelinckx, Phys. Rev. B 58, 8065 (1998)

    CAS  Google Scholar 

  40. P. Esmaeilnejad-Ahranjani, A. Khodadadi, H. Ziaei-Azad, Y. Mortazavi, Chem. Eng. J. 169, 282 (2011)

    CAS  Google Scholar 

  41. Z. Gao, H. Wang, H. Ma, Z. Li, J. Alloys Compd. 646, 73 (2015)

    CAS  Google Scholar 

  42. J.A.M. van Roosmalen, E.H.P. Cordfunke, R.B. Helmholdt, H.W. Zandbergen, J. Solid State Chem. 110, 100 (1994)

    Google Scholar 

  43. V.P. Pashchenko, A.A. Shemyakov, A.V. Pashchenko, V.K. Prokopenko, Y.F. Revenko, V.A. Turchenko, V.N. Varyukhin, V.P. D’Yakonov, H. Szymczak, Low Temp. Phys. 33, 663 (2007)

    CAS  Google Scholar 

  44. V.T. Dovgij, A.I. Linnik, V.P. Pashchenko, V.N. Derkachenko, V.K. Prokopenko, V.A. Turchenko, N.V. Davydeiko, V.Y. Sycheva, V.P. Dyakonov, A.V. Klimov, H. Szymczak, Low Temp. Phys. 29, 285 (2003)

    CAS  Google Scholar 

  45. N.A. Liedienov, V.M. Kalita, A.V. Pashchenko, Y.I. Dzhezherya, I.V. Fesych, Q. Li, G.G. Levchenko, J. Alloys Compd. 836, 155440 (2020)

    CAS  Google Scholar 

  46. S.V. Trukhanov, J. Exp. Theor. Phys. 100, 95 (2005)

    CAS  Google Scholar 

  47. S.V. Trukhanov, A.V. Trukhanov, A.N. Vasilev, A. Maignan, H. Szymczak, JETP Lett. 85, 507 (2007)

    CAS  Google Scholar 

  48. M.V. Zdorovets, A.L. Kozlovskiy, Vacuum 168, 108838 (2019)

    CAS  Google Scholar 

  49. S.V. Trukhanov, A.V. Trukhanov, A.N. Vasiliev, H. Szymczak, J. Exp. Theor. Phys. 111, 209 (2010)

    CAS  Google Scholar 

  50. V.P. Pashchenko, S.I. Khartsev, O.P. Cherenkov, Inorg. Mater. 35, 1509 (1999)

    Google Scholar 

  51. O.I. Tolstolytkin, V.P. Kravchyk, O.I. Matviienko, Metallofiz. Noveishie Tekhnol. 26, 1611 (2004)

    Google Scholar 

  52. A.I. Tovstolytkin, A.N. Pogorily, I.V. Lezhnenko, A.I. Matviyenko, D.I. Podyalovski, V.P. Kravchik, Phys. Solid State 45, 1952 (2003)

    CAS  Google Scholar 

  53. A.I. Tovstolytkin, A.N. Pogorily, A.I. Matviyenko, A.Y. Vovk, Z. Wang, J. Appl. Phys. 98, 043902 (2005)

    Google Scholar 

  54. A. Tovstolytkin, A. Pogorily, A. Vovk, D. Podyalovskii, I. Lezhnenko, A. Matviyenko, J. Magn. Magn. Mater. 272–276, 1839–1840 (2004)

    Google Scholar 

  55. A.N. Pogorily, A.I. Tovstolytkin, I.V. Lezhnenko, A.I. Matviyenko, V.P. Kravchik, Low Temp. Phys. 29, 563 (2003)

    CAS  Google Scholar 

  56. S.A. Solopan, O.I. V’yunov, A.G. Belous, A.I. Tovstolytkin, L.L. Kovalenko, J. Eur. Ceram. Soc. 30, 259 (2010)

    CAS  Google Scholar 

  57. H.Y. Hwang, S.W. Cheong, P.G. Radaelli, M. Marezio, B. Batlogg, Phys. Rev. Lett. 75, 914 (1995)

    CAS  Google Scholar 

  58. S. Surthi, S. Kotru, R.K. Pandey, P. Fournier, Solid State Commun. 125, 107 (2003)

    CAS  Google Scholar 

  59. A.I. Tovstolytkin, A.N. Pogorilyi, S.M. Kovtun, Low Temp. Phys. 25, 962 (1999)

    CAS  Google Scholar 

  60. B. Kim, D. Kwon, J.H. Song, Y. Hikita, B.G. Kim, H.Y. Hwang, Solid State Commun. 150, 598 (2010)

    CAS  Google Scholar 

  61. S.V. Trukhanov, A.V. Trukhanov, A.N. Vasiliev, A.M. Balagurov, H. Szymczak, J. Exp. Theor. Phys. 113, 819 (2011)

    CAS  Google Scholar 

  62. S.V. Trukhanov, N.V. Kasper, I.O. Troyanchuk, M. Tovar, H. Szymczak, K. Bärner, J. Solid State Chem. 169, 85 (2002)

    CAS  Google Scholar 

  63. A. Gupta, G. Gong, Phys. Rev. B 54, R15629 (1996)

    CAS  Google Scholar 

  64. M.V. Zdorovets, A. Arbuz, A.L. Kozlovskiy, Ceram. Int. 46, 6217 (2020)

    CAS  Google Scholar 

  65. S.V. Trukhanov, V.A. Khomchenko, D.V. Karpinsky, M.V. Silibin, A.V. Trukhanov, L.S. Lobanovsky, H. Szymczak, C.E. Botez, I.O. Troyanchuk, J. Rare Earths 37, 1242 (2019)

    CAS  Google Scholar 

  66. M. Ziese, H.C. Semmelhack, K.H. Han, S.P. Sena, H.J. Blythe, J. Appl. Phys. 91, 9930 (2002)

    CAS  Google Scholar 

Download references

Funding

The work is partially supported by the NAS of Ukraine and MES of Ukraine through the projects “Nanostructured magnetic composites for the systems of thermoelectronic control and thermostabilization” (No. 0120U100457), “Micro and nanofluidics in the magnetic field of scattering of the artificial and biogenic magnetic particles” (No. 0118U003790) and by the Department of Targeted Training of Taras Shevchenko National University of Kyiv at the National Academy of Sciences of Ukraine via project No. 0119U101609 (1F).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya. M. Lytvynenko.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lytvynenko, Y.M., Polek, T.I., Pashchenko, A.V. et al. Thickness- and substrate-dependent magnetotransport properties of lanthanum–strontium manganite films with overstoichiometric manganese content. J Mater Sci: Mater Electron 31, 16360–16368 (2020). https://doi.org/10.1007/s10854-020-04186-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04186-w

Navigation