Skip to main content

Advertisement

Log in

Direct growth of Fe-incorporated NiSe microspheres on FeNi alloy foam as a highly efficient electrocatalyst for oxygen evolution reaction

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Transition metal selenides with special structures and rational component modulation have received tremendous research interest to ameliorate the sluggish kinetics of oxygen evolution reaction (OER) in electrochemical water splitting. Here, we propose a facile hydrothermal treatment strategy to prepare porous Fe-incorporated NiSe microspheres via in situ selenization of iron–nickel foam. The as-obtained 3D integrated anode demonstrates excellent electrocatalytic performance towards OER in concentrated alkaline media (1.0 M KOH), with a small onset overpotential of 170 mV, an overpotential as low as 236 mV to achieve a current density of 50 mA cm−2, and a small Tafel slope of 53 mV dec−1. The overpotential at 50 mA cm−2 shows no obvious change during the whole durability test for 24 h, indicating long-term stable electrocatalytic activity. Characterizations of the electrode after stability test reveal the oxidation of the crystallized Fe-incorporated NiSe microspheres which probably generates amorphous Ni(Fe)OOH. The microspheres were partially dissolved and connected with each other to form a wormlike porous structure. The superior OER activity is largely attributed to the highly active Fe–Ni selenide and derived oxyhydroxide of 3D porous structure on the FeNi foam substrate. The facile synthesis strategy in this work can be conveniently applied to the preparation of a variety of selenides of metal foams with different compositions as highly efficient electrocatalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. A. Landman, H. Dotan, G.E. Shter, M. Wullenkord, A. Houaijia, A. Maljusch, G.S. Grader, A. Rothschild, Nat. Mater. 16, 646 (2017)

    CAS  Google Scholar 

  2. J.A. Turner, Science 305, 972 (2004)

    CAS  Google Scholar 

  3. J. Yeston, Science 355, 143 (2017)

    Google Scholar 

  4. G.W. Crabtree, M.S. Dresselhaus, M.V. Buchanan, Phys. Today 57, 39 (2004)

    CAS  Google Scholar 

  5. C.C.L. McCrory, S. Jung, J.C. Peters, T.F. Jaramillo, J. Am. Chem. Soc. 135, 16977 (2013)

    CAS  Google Scholar 

  6. H. Dau, C. Limberg, T. Reier, M. Risch, S. Roggan, P. Strasser, ChemCatChem 2, 724 (2010)

    CAS  Google Scholar 

  7. N.-T. Suen, S.-F. Hung, Q. Quan, N. Zhang, Y.-J. Xu, H.M. Chen, Chem. Soc. Rev. 46, 337 (2017)

    CAS  Google Scholar 

  8. E. Willinger, C. Massué, R. Schlögl, M.G. Willinger, J. Am. Chem. Soc. 139, 12093 (2017)

    CAS  Google Scholar 

  9. H. Over, Chem. Rev. 112, 3356 (2012)

    CAS  Google Scholar 

  10. X. Zou, Y. Zhang, Chem. Soc. Rev. 44, 5148 (2015)

    CAS  Google Scholar 

  11. J. Li, Y. Wang, T. Zhou, H. Zhang, X. Sun, J. Tang, L. Zhang, A.M. Al-Enizi, Z. Yang, G. Zheng, J. Am. Chem. Soc. 137, 14305 (2015)

    CAS  Google Scholar 

  12. Y. Li, P. Hasin, Y. Wu, Adv. Mater. 22, 1926 (2010)

    CAS  Google Scholar 

  13. L. Zhang, Q. Liang, P. Yang, Y. Huang, W. Chen, X. Deng, H. Yang, J. Yan, Y. Liu, Int. J. Hydrogen Energ. 44, 24209 (2019)

    CAS  Google Scholar 

  14. K. Wang, C. Liu, W. Wang, N. Mitsuzaki, Z. Chen, J. Mater. Sci. Mater. Electron. 30, 4144 (2019)

    CAS  Google Scholar 

  15. C. Liu, K. Wang, J. Zhang, X. Zheng, Q. Liang, Z. Chen, J. Mater. Sci. Mater. Electron. 29, 10744 (2018)

    CAS  Google Scholar 

  16. Y. Li, Z. Zhou, H. Xu, X. Liao, G. Cheng, M. Sun, L. Yu, J. Mater. Sci. Mater. Electron. 30, 18424 (2019)

    CAS  Google Scholar 

  17. C. Hao, H. Linfeng, C. Min, Y. Yan, W. Limin, Adv. Funct. Mater. 24, 934 (2014)

    Google Scholar 

  18. S. Chen, J. Duan, M. Jaroniec, S.Z. Qiao, Angew. Chem. Int. Edit. 52, 13567 (2013)

    CAS  Google Scholar 

  19. S. Arumugam, G. Pandian, S. Sangaraju, Adv. Funct. Mater. 26, 4661 (2016)

    Google Scholar 

  20. J. Tie, S. Peng, G. Diao, F. Chen, M. Sun, L. Yu, J. Zhou, Y. Li, J. Mater. Sci. Mater. Electron. 29, 2251 (2018)

    CAS  Google Scholar 

  21. X. Xu, F. Song, X. Hu, Nat. Commun. 7, 12324 (2016)

    CAS  Google Scholar 

  22. X. Shi, H. Wang, P. Kannan, J. Ding, S. Ji, F. Liu, H. Gai, R. Wang, J. Mater. Chem. A 7, 3344 (2019)

    CAS  Google Scholar 

  23. X. Wang, B. Zheng, B. Yu, B. Wang, W. Hou, W. Zhang, Y. Chen, J. Mater. Chem. A 6, 7842 (2018)

    CAS  Google Scholar 

  24. C. Liu, K. Wang, X. Zheng, X. Liu, Q. Liang, Z. Chen, Carbon 139, 1 (2018)

    CAS  Google Scholar 

  25. M. Zhuang, Y. Ding, X. Ou, Z. Luo, Nanoscale 9, 4652 (2017)

    CAS  Google Scholar 

  26. G. Chen, T. Ma, Z. Liu, N. Li, Y. Su, K. Davey, S. Qiao, Adv. Funct. Mater. 26, 3314 (2016)

    CAS  Google Scholar 

  27. L. Marc, K.C. Sandra, P. Christian, S. Hans-Peter, A. Markus, S. Menny, Angew. Chem. Int. Edit. 54, 12361 (2015)

    Google Scholar 

  28. C.Y. Son, I.H. Kwak, Y.R. Lim, J. Park, Chem. Commun. 52, 2819 (2016)

    CAS  Google Scholar 

  29. K. Fominykh, P. Chernev, I. Zaharieva, J. Sicklinger, G. Stefanic, M. Döblinger, A. Müller, A. Pokharel, S. Böcklein, C. Scheu, T. Bein, D. Fattakhova-Rohlfing, ACS Nano 9, 5180 (2015)

    CAS  Google Scholar 

  30. J. Xie, H. Qu, F. Lei, X. Peng, W. Liu, L. Gao, P. Hao, G. Cui, B. Tang, J. Mater. Chem. A 6, 16121 (2018)

    CAS  Google Scholar 

  31. J. Wang, X. Teng, Y. Niu, L. Guo, J. Kong, X. He, Z. Chen, RSC Adv. 9, 21679 (2019)

    CAS  Google Scholar 

  32. P. Ganesan, A. Sivanantham, S. Shanmugam, J. Mater. Chem. A 4, 16394 (2016)

    CAS  Google Scholar 

  33. S. Qin, J. Lei, Y. Xiong, X. Xu, X. Geng, J. Wang, RSC Adv. 9, 10231 (2019)

    CAS  Google Scholar 

  34. Z. Ma, R. Li, M. Wang, H. Meng, F. Zhang, X.-Q. Bao, B. Tang, X. Wang, Electrochim. Acta 219, 194 (2016)

    CAS  Google Scholar 

  35. F. Hu, H. Wang, Y. Zhang, X. Shen, G. Zhang, Y. Pan, J.T. Miller, K. Wang, S. Zhu, X. Yang, C. Wang, X. Wu, Y. Xiong, Z. Peng, Small 15, 1901020 (2019)

    Google Scholar 

  36. Z. Wang, J. Li, X. Tian, X. Wang, Y. Yu, K.A. Owusu, L. He, L. Mai, A.C.S. Appl, Mater. Inter. 8, 19386 (2016)

    CAS  Google Scholar 

  37. J.-Q. Chi, X. Shang, F. Liang, B. Dong, X. Li, Y.-R. Liu, K.-L. Yan, W.-K. Gao, Y.-M. Chai, C.-G. Liu, Appl. Surf. Sci. 401, 17 (2017)

    CAS  Google Scholar 

  38. J. Yu, G. Cheng, W. Luo, Nano Res. 11, 2149 (2018)

    CAS  Google Scholar 

  39. J. Du, A. Yu, Z. Zou, C. Xu, Inorg. Chem. Front. 5, 814 (2018)

    CAS  Google Scholar 

  40. W. Tang, S. Zuo, J. Wang, Y. Mi, Z. Chen, Electrochim. Acta 247, 835 (2017)

    CAS  Google Scholar 

  41. Y.-Y. Sun, M.-Y. Jiang, L.-K. Wu, G.-Y. Hou, Y.-P. Tang, M. Liu, Sustain. Energy Fuels 4, 582 (2020)

    CAS  Google Scholar 

  42. C. Cao, D.-D. Ma, Q. Xu, X.-T. Wu, Q.-L. Zhu, Adv. Funct. Mater. 29, 1807418 (2019)

    Google Scholar 

  43. Y. Liang, Q. Liu, A.M. Asiri, X. Sun, Y. He, Int. J. Hydrogen Energ. 40, 13258 (2015)

    CAS  Google Scholar 

  44. X. Bu, R. Wei, W. Gao, C. Lan, J.C. Ho, J. Mater. Chem. A 7, 12325 (2019)

    CAS  Google Scholar 

  45. C. Tang, A.M. Asiri, X. Sun, Chem. Commun. 52, 4529 (2016)

    CAS  Google Scholar 

  46. A. Li, C. Wang, H. Zhang, Z. Zhao, J. Wang, M. Cheng, H. Zhao, J. Wang, M. Wu, J. Wang, Electrochim. Acta 276, 153 (2018)

    CAS  Google Scholar 

  47. Q. Zhang, T. Li, J. Liang, N. Wang, X. Kong, J. Wang, H. Qian, Y. Zhou, F. Liu, C. Wei, Y. Zhao, X. Zhang, J. Mater. Chem. A 6, 7509 (2018)

    CAS  Google Scholar 

  48. Y. Wu, R. Su, Y. Li, Z. Wang, Z. Lü, L. Xu, B. Wei, Electrochim. Acta 309, 415 (2019)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Innovation Platform Foundation Project of Hunan Education Department of China (No. 18K087), the Natural Science Foundation for Youths of Hunan Province of China (No. 2019JJ50206), and the Scientific Research Project of Hunan Education Department of China (No.19B230).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haihua Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Yang, P., Chen, W. et al. Direct growth of Fe-incorporated NiSe microspheres on FeNi alloy foam as a highly efficient electrocatalyst for oxygen evolution reaction. J Mater Sci: Mater Electron 31, 15968–15975 (2020). https://doi.org/10.1007/s10854-020-04158-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04158-0

Navigation