Skip to main content
Log in

Electric modulus approach to the analysis of electric relaxation and magnetodielectric effect in reduced graphene oxide–poly(vinyl alcohol) nanocomposite

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The polymers poly(vinyl alcohol) (PVA) is used as matrices to synthesize a nanocomposite with reduced graphene oxide (rGO). The structural and optical properties of the rGO and the nanocomposites (rGO–PVA) are studied by XRD, FTIR analysis, FESEM studies, Raman spectroscopy and UV–VIS absorption spectroscopy analysis. Interaction of PVA polymer chains with rGO is confirmed from FTIR study. The bandgap of the PVA and rGO–PVA nanocomposites has been studied from UV–VIS absorption spectrum. The refractive index and optical dielectric constants of PVA, GO, rGO and rGO–PVA nanocomposites have been discussed from optical spectrum analysis. The visual structures of the GO, rGO and rGO–PVA nanocomposites are observed from FESEM study. The electric modulus M*(ɷ) formalism used in the analysis enabled us to distinguish and separate the relaxation processes, dominated by marked conductivity in the ε*(ɷ) representation. In the ceramics studies, the relaxation times are thermally activated and the dipole process has a clearly non-Debye behaviour. The relaxation process is described with the use of the activation energy of approximately EA = 0.12 eV and the characteristic relaxation time, τ0 = 2.07 × 10–7 s. The dielectric property of the nanocomposite (rGO–PVA) is studied in zero magnetic field and in magnetic field (H) up to 1.2 T. From these data, magnetodielectric effects are obtained as the variation of real (ε′) and imaginary (ε″) parts of complex dielectric constant with H at some frequencies. In our study at 100 kHz for the increase of H from zero to 1 T ε′ decreases by 2.5% in rGO–PVA. This fact is indicative of the interaction between rGO filler particles and PVA polymer chains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. A.K. Geim, K. Novoselov, The rise of graphene. Nature Mater 6, 183–191 (2007)

    CAS  Google Scholar 

  2. A.K. Geim, Graphene: status and prospects. Science 324(5934), 1530–1534 (2009)

    CAS  Google Scholar 

  3. K. Novoselov, V. Fal′ko, L. Colombo et al., A roadmap for graphene. Nature 490, 192–200 (2012)

    CAS  Google Scholar 

  4. Y. Zhu, S. Murali, X. Li, J.W. Suk, J.R. Potts, R.S. Ruof, Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater. 22, 3906–3924 (2010)

    CAS  Google Scholar 

  5. M.J. Allen, V.C. Tung, R.B. Kaner, Honeycomb carbon: a review of graphene. Chem. Rev. 110(1), 132–145 (2010)

    CAS  Google Scholar 

  6. C.N.R. Rao, A.K. Sood, K.S. Subrahmanyam, A. Govindaraj, Graphene: the new two-dimensional nanomaterial. Agnew Chem. Int. Ed. 48(42), 7752–7777 (2009)

    CAS  Google Scholar 

  7. S. Vadukumpully, J. Paul, N. Mahanta, S. Valiyaveettil, Flexible conductive graphene/poly(vinyl chloride) composite thin films with high mechanical strength and thermal stability. Carbon 49(1), 198–205 (2011)

    CAS  Google Scholar 

  8. J.O. Iroh, J.P. Chime, D.A. Scola, J.P. Wesson, Electrochemical process for preparing continuous graphite fibre-thermoplastic composites. Polymer 35(6), 1306–1311 (1994)

    CAS  Google Scholar 

  9. W. Zheng, S.C. Wong, Electrical conductivity and dielectric properties of PMMA/expanded graphite composites. Compos. Sci. Technol. 63(2), 225–235 (2003)

    CAS  Google Scholar 

  10. S Ansari, EP Giannelis (2009) Functionalized graphene sheet—Poly(vinylidene fluoride) conductive nanocomposites. J. Polym. Sci. Part B Polym. Phys. 47(9): 888–897.

  11. X.L. Wang, H. Bai, Z.Y. Yao, A.R. Liu, G.Q. Shi, Electrically conductive and mechanically strong biomimetic chitosan/reduced graphene oxide composite films. J. Mater. Chem. 20(41), 9032–9036 (2010)

    CAS  Google Scholar 

  12. S. Bose, T. Kuila, M.E. Uddin, N.H. Kim, A.K.T. Lau, J.H. Lee, In-situ synthesis and characterization of electrically conductive polypyrrole/graphene nanocomposites. Polymer 51(25), 5921–5928 (2010)

    CAS  Google Scholar 

  13. S. Stankovich, D. Dikin, G. Dommett et al., Graphene-based composite materials. Nature 442, 282–286 (2006)

    CAS  Google Scholar 

  14. H. Kim, A.A. Abdala, C.W. Macosko, Graphene/Polymer Nanocomposites. Macromolecules 43(16), 6515–6530 (2010)

    CAS  Google Scholar 

  15. J.R. Potts, D.R. Dreyer, C.W. Bielawski, R.S. Ruoff, Graphene-based polymer nanocomposites. Polymer 52(1), 5–25 (2011)

    CAS  Google Scholar 

  16. T. Kuilla, S. Bhadra, D. Yao, N.H. Kim, S. Bose, J.H. Lee, Recent advances in graphene based polymer composites. Prog. Polym. Sci. 35(11), 1350–1375 (2010)

    CAS  Google Scholar 

  17. D. Cai, M. Song, Recent advance in functionalized graphene/polymer nanocomposites. J. Mater. Chem. 20(37), 7906–7915 (2010)

    CAS  Google Scholar 

  18. R. Verdejo, M.M. Bernal, L.J. Romasanta, M.A. Lopez-Manchado, Graphene filled polymer nanocomposites. J. Mater. Chem. 21(10), 3301–3310 (2011)

    CAS  Google Scholar 

  19. X. Huang, X. Qi, F. Boey, H. Zhang, Graphene-based composites. Chem. Soc. Rev. 41(2), 666–686 (2012)

    CAS  Google Scholar 

  20. R.J. Young, I.A. Kinloch, L. Gong, K.S. Novoselov, The mechanics of graphene nanocomposites: a review. Comp. Sci Technol. 72(12), 1459–1476 (2012)

    CAS  Google Scholar 

  21. Z. Li, R.J. Young, N.R. Wilson, I.A. Kinloch, C. Vallés, Z. Li, Effect of the orientation of graphene-based nanoplatelets upon the Young's modulus of nanocomposites. Comp. Sci Technol. 123, 125–133 (2016)

    CAS  Google Scholar 

  22. A.J. Marsden, D.G. Papageorgiou, C. Vallés, A. Liscio, V. Palermo, M.A. Bissett, R.J. Young, I.A. Kinloch, Electrical percolation in graphene–polymer composites. 2DMater. 5(3), 032003 (2018)

    Google Scholar 

  23. K. Hu, D.D. Kulkarni, I. Choi, V.V. Tsukruk, Graphene-polymer nanocomposites for structural and functional applications. Prog. Polym. Sci. 39(11), 1934–1972 (2014)

    CAS  Google Scholar 

  24. S. Park, R. Ruoff, Chemical methods for the production of graphenes. Nature Nanotech 4, 217–224 (2009)

    CAS  Google Scholar 

  25. D.R. Dreyer, S. Park, C.W. Bielawski, R.S. Ruoff, The chemistry of graphene oxide. Chem. Soc. Rev. 39, 228–240 (2010)

    CAS  Google Scholar 

  26. K.P. Loh, Q. Bao, P.K. Ang, J. Yang, The chemistry of graphene. J. Mater. Chem. 20, 2277–2289 (2010)

    CAS  Google Scholar 

  27. O.C. Compton, S.T. Nguyen, Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon-based material. Small 6(6), 711–723 (2010)

    CAS  Google Scholar 

  28. A. Lerf, H. He, M. Forster, J. Klinowski, Structure of graphite oxide revisited. J. Phys. Chem. B 102(23), 4477–4482 (1998)

    CAS  Google Scholar 

  29. H. He, J. Klinowski, M. Forster, A. Lerf, A new structural model for graphite oxide. Chem. Phys Lett. 287(1–2), 53–56 (1998)

    CAS  Google Scholar 

  30. S. Mitra, O. Mondal, D.R. Saha, A. Datta, S. Banerjee, D. Chakravorty, Magnetodielectric effect in graphene-PVA nanocomposites. J. Phys. Chem. C 115(29), 14285–14289 (2011)

    CAS  Google Scholar 

  31. I. Tantis, G.C. Psarras, D. Tasis, Functionalized graphene–poly(vinyl alcohol) nanocomposites: physical and dielectric properties. eXPRESS Polym Lett 6(4), 283–292 (2012)

    CAS  Google Scholar 

  32. J.H. Yang, Y.D. Lee, Highly electrically conductive rGO/PVA composites with a network dispersive nanostructure. J. Mater. Chem. 22(17), 8512–8517 (2012)

    CAS  Google Scholar 

  33. W.S. Hummers Jr., R.E. Offeman, Preparation of graphitic oxide. j. Am. Chem. Soc. 80(6), 1339–1339 (1958)

    CAS  Google Scholar 

  34. N.I. Kovtyukhova, P.J. Ollivier, B.R. Martin, T.E. Mallouk, S.A. Chizhik, E.V. Buzaneva, A.D. Gorchinskiy, Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations. Chem. Mater. 11(3), 771–778 (1999)

    CAS  Google Scholar 

  35. H.J. Salavagione, G. Martínez, M.A. Gómez, Synthesis of poly(vinyl alcohol)/reduced graphite oxide nanocomposites with improved thermal and electrical properties. J. Mater. Chem. 19(28), 5027–5032 (2009)

    CAS  Google Scholar 

  36. A. Bahrami, I. Kazeminezhad, Y. Abdi, Pt-Ni/rGO counter electrode: electrocatalytic activity for dye-sensitized solar cell. Superlattices Microstruct. 125, 125–137 (2019)

    CAS  Google Scholar 

  37. J. Ma, Y. Li, X. Yin, Y. Xu, J. Yue, J. Bao, T. Zhou, Poly(vinyl alcohol)/graphene oxide nanocomposites prepared by in situ polymerization with enhanced mechanical properties and water vapor barrier properties. RSC Adv. 6, 49448–49458 (2016)

    CAS  Google Scholar 

  38. J. Ou, J. Wang, S. Liu, B. Mu, J. Ren, H. Wang, S. Yang, Tribology study of reduced graphene oxide sheets on silicon substrate synthesized via covalent assembly. Langmuir 26(20), 15830–15836 (2010)

    CAS  Google Scholar 

  39. S.Z. Moghaddam, S. Sabury, F. Sharif, Dispersion of rGO in polymeric matrices by thermodynamically favorable self-assembly of GO at oil–water interfaces. RSC Adv. 4, 8711–8719 (2014)

    CAS  Google Scholar 

  40. Y. Xu, W. Hong, H. Bai, C. Li, G. Shi, Strong and ductile poly(vinyl alcohol)/graphene oxide composite films with a layered structure. Carbon 47(15), 3538–3543 (2009)

    CAS  Google Scholar 

  41. C. Bao, Y. Guo, L. Song, Y. Hu, Poly(vinyl alcohol) nanocomposites based on graphene and graphite oxide: a comparative investigation of property and mechanism. J. Mater. Chem. 21(36), 13942–13950 (2011)

    CAS  Google Scholar 

  42. S. Gahlot, P.P. Sharma, V. Kulshrestha, P.K. Jha, SGO/SPES-based highly conducting polymer electrolyte membranes for fuel cell application. ACS Appl. Mater. Interfaces 6(8), 5595–5601 (2014)

    CAS  Google Scholar 

  43. X. Zhao, M. Gnanaseelan, D. Jehnichen, F. Simon, J. Pionteck, Green and facile synthesis of polyaniline/tannic acid/rGO composites for supercapacitor purpose. J. Mater. Sci. 54, 10809–10824 (2019)

    CAS  Google Scholar 

  44. L. Shao, J. Li, Y. Zhang, S. Gong, H. Zhang, Y. Wang, The effect of the reduction extent on the performance of graphene/poly(vinyl alcohol) composites. J. Mater. Chem. A 2(34), 14173–14180 (2014)

    CAS  Google Scholar 

  45. M. Cano, U. Khan, T. Sainsbury, A. O'Neill, Z. Wang, I.T. McGovern, W.K. Maser, A.M. Benito, J.N. Coleman, Improving the mechanical properties of graphene oxide based materials by covalent attachment of polymer chains. Carbon 52, 363–371 (2013)

    CAS  Google Scholar 

  46. H. Beydaghi, M. Javanbakht, E. Kowsari, Synthesis and characterization of poly(vinyl alcohol)/sulfonated graphene oxide nanocomposite membranes for use in proton exchange membrane fuel cells (PEMFCs). Ind. Eng. Chem. Res. 53(43), 16621–16632 (2014)

    CAS  Google Scholar 

  47. H.K. Cheng, N.G. Sahoo, Y.P. Tan, Y. Pan, H. Bao, L. Li, S.H. Chan, J. Zhao, Poly(vinyl alcohol) nanocomposites filled with poly(vinyl alcohol)-grafted graphene oxide. ACS Appl. Mater. Interfaces 4(5), 2387–2394 (2012)

    CAS  Google Scholar 

  48. Y. Shi, D. Xiong, J. Li, K. Wang, N. Wang, In situ repair of graphene defects and enhancement of its reinforcement effect in polyvinyl alcohol hydrogels. RSC Adv. 7, 1045–1055 (2017)

    CAS  Google Scholar 

  49. V.C. Tung, M.J. Allen, Y. Yang, R.B. Kaner, High-throughput solution processing of large-scale graphene. Nat. Nanotechnol. 4, 25–29 (2009)

    CAS  Google Scholar 

  50. H. Chen, R. Li, X. Xu, P. Zhao, D.S.H. Wong, X. Chen, S. Chen, X. Yan, Citrate-based fluorophores in polymeric matrix by easy and green in situ synthesis for full-band UV shielding amd emissive transparent disply. J. Mater. Sci. 54, 1236–1247 (2019)

    Google Scholar 

  51. Q. Lai, S. Zhu, X. Luo, M. Zou, S. Huang, Ultraviolet-visible spectroscopy of graphene oxides. AIP Adv. 2, 032146-1–032146-5 (2012)

    Google Scholar 

  52. C.P.P. Wong, C.W. Lai, K.M. Lee, S.B.A. Hamid, Advanced chemical reduction of reduced graphene oxide and its photocatalytic activity in degrading reactive black 5. Materials 8(10), 7118–7128 (2015)

    CAS  Google Scholar 

  53. R.M. Abdullah, S.B. Aziz, S.M. Mamand, A.Q. Hassan, S.A. Hussein, M.F.Z. Kadir, Reducing the crystallite size of spherulites in PEO-based polymer nanocomposites mediated by carbon nanodots and Ag nanoparticles. Nanomaterials 9(6), 874 (2019)

    Google Scholar 

  54. S.B. Aziz, M.A. Rasheed, A.M. Hussein, H.M. Ahmed, Fabrication of polymer blend composites based on [PVA-PVP](1−x):(Ag2S)x (0.01 ≤ x ≤ 0.03) with small optical band gaps: Structural and optical properties. Mater. Sci. Semiconductor Process 71: 197–203 (2017).

  55. S. B. Aziz, Aso Q. Hassan, Sewara J. Mohammed, Wrya O. Karim, M. F. Z. Kadir, H. A. Tajuddin and N. N. M. Y. Chan, Structural and optical characteristics of PVA:C-Dotcomposites: tuning the absorption of ultra violet (UV) region. Nanomaterials 9, 216 (2019).

  56. A.K. Bhunia, T. Kamilya, S. Saha, Temperature dependent and kinetic study of the adsorption of bovine serum albumin to ZnO nanoparticle surfaces. Chem Select 1(11), 2872–2882 (2016)

    CAS  Google Scholar 

  57. S.B. Aziz, Modifying Poly(Vinyl Alcohol) (PVA) from insulator to small-bandgap polymer: a novel approach for organic solar cells and optoelectronic devices. J Electron Mater 45, 736–745 (2016)

    CAS  Google Scholar 

  58. S.B. Aziz, M.A. Rasheed, H.M. Ahmed, Synthesis of polymer nanocomposites based on [Methyl Cellulose](1−x):(CuS)x (0.02 M ≤ x ≤ 0.08 M) with desired optical band gaps. Polymers, 9, 194. (2017).

  59. M.A. Brza, S.B. Aziz, H. Anuar, M.H.F. Al Hazza, From green remediation to polymer hybridfabrication with improved optical band gaps. Int. J. Mol. Sci. 20, 3910 (2019)

    CAS  Google Scholar 

  60. S.B. Aziz, H.M. Ahmed, A.M. Hussein, A.B. Fathulla, R.M. Wsw, R.T. Hussein, Tuning the absorption of ultraviolet spectra and optical parameters of aluminum doped PVA based solid polymer composites. J Mater Sci. 26(10), 8022–8028 (2015)

    CAS  Google Scholar 

  61. S.B. Aziz, R.T. Abdulwahid, H.A. Rsaul, H.M. Ahmed, In situ synthesis of CuS nanoparticle with a distinguishable SPR peak in NIR region. J Mater Sci. 27(5), 4163–4171 (2016)

    CAS  Google Scholar 

  62. S.B. Aziz, Morphological and optical characteristics of Chitosan(1–x):Cuox (4 ≤ x ≤ 12) based polymer nano-composites: optical dielectric loss as an alternative method for Tauc’s model. Nanomaterials 7, 444 (2017)

    Google Scholar 

  63. N.G. McCrum, B.E. Read, G. Williams, Anelastic and dielectric effects in polymeric solids (Wiley, New York, 1967)

    Google Scholar 

  64. H. Wagner, R. Richert, Thermally stimulated modulus relaxation in polymers: method and interpretation. Polymer 38(23), 5801–5806 (1997)

    CAS  Google Scholar 

  65. C. Leon, M.L. Lucia, J. Santamaria, Correlated ion hopping in single-crystal yttria-stabilized zirconia. Phys. Rev. B 55(2), 882 (1998)

    Google Scholar 

  66. R. Richert, H. Wagner, The dielectric modulus: relaxation versus retardation. Solid State Ion. 105(1–4), 167–173 (1998)

    CAS  Google Scholar 

  67. P.B. Macedo, C.T. Moynihan, R. Bose, The role of ionic diffusion in polarisation in vitreous ionic conductORS. Phys. Chem. Glasses 13(6), 171–179 (1972)

    CAS  Google Scholar 

  68. J. Liu, C.G. Duan, W.G. Yin, W.N. Mei, R.W. Smith, J.R. Hardy, Dielectric permittivity and electric modulus in Bi2Ti4O11. J. Chem. Phys. 119(5), 2812 (2003)

    CAS  Google Scholar 

  69. G. Kandhol, H. Wadhwa, S. Chand, S. Mahendia, S. Kumar, Study of dielectric relaxation behaviour of composites of Poly(vinyl alchohol)(PVA) and Reduced grapheme oxide(RGO). Vacuum 160(02), 384–393 (2019)

    CAS  Google Scholar 

  70. G. Williams, D.C. Watts, Non-symmetrical dielectric relaxation behaviour arising from a simple empirical decay function. Trans. Faraday Soc. 66, 80–85 (1970)

    CAS  Google Scholar 

  71. V. Mydhili, S. Manivannan, Electrical and dielectric behaviour in poly(vinyl alcohol)/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) blend for energy storage applications. Polym. Bull. 76, 4735–4752 (2019)

    CAS  Google Scholar 

  72. M.M. Parish, P.B. Littlewood, Magnetocapacitance in nonmagnetic composite media. Phys. Rev. Lett. 101(16), 166602 (2008)

    Google Scholar 

  73. G. Catalan, Magnetocapacitance without magnetoelectric coupling. Appl. Phys. Lett. 88(10), 102902 (2006)

    Google Scholar 

  74. X. Xia, J. Hao, Y. Wang, Z. Zhong, G.J. Weng, Theory of electrical conductivity and dielectric permittivity of highly aligned graphene-based nanocomposites. J. Phys. 29, 205702 (2017)

    Google Scholar 

  75. X. Xia, Y. Wang, Z. Zhong, G.J. Weng, A theory of electrical conductivity, dielectric constant, and electromagnetic interference shielding for lightweight graphene composite foams. J. Appl. Phys. 120, 085102 (2016)

    Google Scholar 

  76. J.W. Shang, Y.H. Zhang, L. Yu, B. Shen, F. Lv, P.K. Chu, Fabrication and dielectric propertiesof oriented polyvinylidene fluoride nanocomposites incorporated with graphene nanosheets. Mater. Chem. Phys. 134(2–3), 867–874 (2012)

    CAS  Google Scholar 

  77. E.J.G. Santos, E. Kaxiras, Electric-field dependence of the effective dielectric constant in graphene. Nano Lett. 13(3), 898–902 (2013)

    CAS  Google Scholar 

  78. S. Sarkar, A. Mondal, K. Dey, R. Ray, Defect driven tailoring of colossal dielectricity of reduced graphene oxide. Mat. Res. Bull. 74, 465–471 (2016)

    CAS  Google Scholar 

  79. X. Hong, W. Yu, D.D.L. Chung, Electric permittivity of reduced graphite oxide. Carbon 111, 182–190 (2017)

    CAS  Google Scholar 

Download references

Acknowledgements

Authors are thankful to the Department of Physics, Department of Electronics of Midnapore College (Autonomous) for various instruments facilities. We thank the CRF, IIT Kharagpur, India for providing Raman, FTIR and FESEM measurement facilities. We thank UGC, India for awarding a MRP grant Vide UGC letter No. F. PSW–224/15-16(ERO) dt.16 Nov.16 to Dr. S.S. Pradhan, Assistant Professor, Midnapore College (Autonomous) Midnapore 721101, India for pursuing this research work. Authors are also thanksful to the Department of Physics, Government General Degree College at Gopiballavpur-II. 

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Bhunia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, T.N., Bhunia, A.K., Pradhan, S.S. et al. Electric modulus approach to the analysis of electric relaxation and magnetodielectric effect in reduced graphene oxide–poly(vinyl alcohol) nanocomposite. J Mater Sci: Mater Electron 31, 15919–15930 (2020). https://doi.org/10.1007/s10854-020-04153-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04153-5

Navigation