Skip to main content
Log in

Effect of annealing temperature on structural, morphological and dielectric properties of La0.8Ba0.1Ce0.1FeO3 perovskite

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The La0.8Ba0.1Ce0.1FeO3 compounds were prepared by the auto-combustion route and annealed at two different temperatures to study their effect on the structural, morphological and dielectric properties of the Barium- and Cerium-substituted LaFeO3 compound. The X-ray diffraction analysis revealed that both compounds crystallized in the orthorhombic structure belonging to the Pnma space group. The rise of the annealing temperature from 700 to 900 °C was found to lead to the increase of the average grain size value as characterized by SEM. Furthermore, two clear relaxations phenomena have been detected using the Nyquist and Argand’s plots of dielectric impedance and Modulus curves at different temperatures, which are attributed to both grain and grain boundary contributions. Their activation energies have been calculated not only from the frequency dependence of both imaginary parts of impedance (Z″) and modulus (M″) but also from the contribution of the resistances deduced from the Nyquist plots. These plots have been adjusted using two circuits in series, each of which containing a resistance in parallel to a CEP capacitance. The conduction mechanism was analyzed by ac conduction using the Jonscher’s power law. The NSPT conduction model has been confirmed for both compounds in which the rise in heat treatment decreases the binding energy of carriers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A. Schön, C. Dujardin, J.P. Dacquin, P. Granger, Enhancing catalytic activity of perovskite-based catalysts in three-way catalysis by surface composition optimization. Catal. Today 258, 543–548 (2015)

    Google Scholar 

  2. H. Tanaka, I. Tan, M. Uenishi, M. Taniguchi, M. Kimura, Y. Nishihata, J. Mizuki, LaFePdO3 perovskite automotive catalyst having a self-regenerative function. J. Alloys Compd. 408–412, 1071–1077 (2006)

    Google Scholar 

  3. Y. Wang, A. Zhu, B. Chen, M. Crocker, C. Shi, Three-dimensional ordered mesoporous Co–Mn oxide: a highly active catalyst for “storage–oxidation” cycling for the removal of formaldehyde. Catal. Commun. 36, 52–57 (2013)

    Google Scholar 

  4. X.P. Dai, Q. Wu, R.J. Li, C.C. Yu, Z.P. Hao, Hydrogen production from a combination of the water−gas shift and redox cycle process of methane partial oxidation via lattice oxygen over LaFeO3 perovskite catalyst. J. Phys. Chem. B 110, 25856–25862 (2006)

    CAS  Google Scholar 

  5. H. Chen, S. Yang, Carbon-based perovskite solar cells without hole transport materials: the front runner to the market. Adv. Mater. 24, 1603994 (2017)

    Google Scholar 

  6. V.M. Gaikwad, S.A. Acharya, Novel perovskite–spinel composite approach to enhance the magnetization of LaFeO3. RSC Adv. 5, 14366 (2015)

    CAS  Google Scholar 

  7. D. Wang, M. Gong, Surface and shape anisotropy effects in LaFeO3 nanoparticles. J. Appl. Phys. 109, 114304 (2011)

    Google Scholar 

  8. M. Viret, D. Rubi, D. Colson, D. Lebeugle, A. Forget, P. Bonville, G. Dhalenne, R. Saint-Martin, G. André, F. Ott, β-NaFeO2, a new room-temperature multiferroic material. Mater. Res. Bull. 47, 2294–2298 (2012)

    CAS  Google Scholar 

  9. W.G. Wang, M. Mogensen, High-performance lanthanum-ferrite-based cathode for SOFC. Solid State Ion. 176, 457 (2005)

    CAS  Google Scholar 

  10. Y. Pei, Y. Li, J.Y. Che, W. Shen, Y. Wang, S. Yang, S. Han, Study on the high-temperature electrochemical performance of perovskite-type oxide LaFeO3 with carbon modification. Int. J. Hydrogen Energy 40, 8742–8749 (2015)

    CAS  Google Scholar 

  11. P. Xiao, L. Zhong, J. Zhu, J. Hong, J. Li, H. Li, Y. Zhu, CO and soot oxidation over macroporous perovskite LaFeO3. Catal. Today 258, 660–667 (2015)

    CAS  Google Scholar 

  12. H. Zhang, H. Qin, C. Gao, G. Zhou, Y. Chen, J. Hu, UV light illumination can improve the sensing properties of LaFeO3 to acetone vapor. Sensors 18, 1990 (2018)

    Google Scholar 

  13. N. Afifah, R. Saleh, The influence of TiO2 nanoparticles on LaFeO3/TiO2 nanocomposites for reduction of aqueous organic dyes. J. Phys. Conf. Ser. 1788, 030080 (2017)

    Google Scholar 

  14. J.A. Gómez-Cuaspud, E. Vera-López, J.B. Carda-Castelló, E. Barrachina-Albert, One-step hydrothermal synthesis of LaFeO3 perovskite for methane steam reforming. Reac. Kinet. Mech. Cat. 120, 167–179 (2017)

    Google Scholar 

  15. M. Idrees, M. Nadeem, S.A. Siddiqi, R. Ahmad, A. Hussnain, M. Mehmood, The organic residue and synthesis of LaFeO3 by combustion of citrate and nitrate precursors. Mater. Chem. Phys. 162, 652–658 (2015)

    CAS  Google Scholar 

  16. M. Idrees, M. Nadeem, M.M. Hassan, Investigation of conduction and relaxation phenomena in LaFe0.9Ni0.1O3 by impedance spectroscopy. J. Phys. D 43, 15 (2010)

    Google Scholar 

  17. E. Cao, Y. Qin, T. Cui, L. Sun, W. Hao, Y. Zhang, Influence of Na doping on the magnetic properties of LaFeO3 powders and dielectric properties of LaFeO3 ceramics prepared by citric sol-gel method. Ceram. Int. 43, 7922–7928 (2017)

    CAS  Google Scholar 

  18. S. Phokha, S. Hunpratup, S. Pinitsoontorn, B. Pustasaeng, S. Rujirawat, S. Maensiri, Structure, magnetic, and dielectric properties of Ti-doped LaFeO3 ceramics synthesized by polymer pyrolysis method. Mater. Res. Bull. 67, 118–125 (2015)

    CAS  Google Scholar 

  19. L. Sun, H. Qin, K. Wang, M. Zhao, J. Hu, Structure and electrical properties of nanocrystalline La1−xBaxFeO3 for gas sensing application. Mater. Chem. Phys. 125, 305–308 (2011)

    CAS  Google Scholar 

  20. X.P. Xiang, L.H. Zhao, B.T. Teng, J.J. Lang, X. Hu, T. Li, Y.A. Fang, M.F. Luo, J.J. Lin, Catalytic combustion of methane on La1−xCexFeO3 oxides. Appl. Surf. Sci 276, 328–332 (2013)

    CAS  Google Scholar 

  21. F.B. Abdallah, A. Benali, S. Azizi, M. Triki, E. Dhahri, M.P.F. Graça, M.A. Valente, Strontium-substituted La0.75Ba0.25−xSrxFeO3 (x = 0.05, 0.10 and 0.15) perovskite: dielectric and electrical studies. J. Mater. Sci. 30, 8457–8470 (2019)

    CAS  Google Scholar 

  22. F.B. Abdallah, A. Benali, M. Triki, E. Dhahri, K. Nomenyo, G. Lerondel, Investigation of structural, morphological, optical and electrical properties of double-doping Lanthanum ferrite. J. Mater. Sci. 30, 3349–3358 (2019)

    CAS  Google Scholar 

  23. A. Benali, S. Azizi, M. Bejar, E. Dhahri, M.F.P. Graça, Structural, electrical and ethanol sensing properties of double-doping LaFeO3 perovskite oxides. Ceram. Int. 40, 14367–14373 (2014)

    CAS  Google Scholar 

  24. E.M. Benali, A. Benali, M. Bejar, E. Dhahri, M.P.F. Graca, M.A. Valente, B.F.O. Costa, J. Mater. Sci. 31, 3197–3214 (2020)

    CAS  Google Scholar 

  25. C. Zhu, A. Nobuta, I. Nakatsugawa, T. Akiyama, Solution combustion synthesis of LaMO3 (M= Fe Co, Mn) perovskite nanoparticles and the measurement of their electrocatalytic properties for air cathode. Int. J. Hydrogen Energy 38, 13238 (2013)

    CAS  Google Scholar 

  26. R.A. Young, The Rietveld Method (Oxford University Press, New York, 1993)

    Google Scholar 

  27. Z. Dai, C.-S. Lee, B.-Y. Kim, C.-H. Kwak, J.-W. Yoon, H.-M. Jeong, J.-H. Lee, Honeycomb-like periodic porous LaFeO3 thin film chemiresistors with enhanced gas-sensing performances. ACS Appl. Mater. Interfaces 2014(6), 16217–16226 (2018)

    Google Scholar 

  28. N. Karthikeyan, R. Ramesh Kumar, G. Jaiganesh, K. Sivakumar, Thermoelectric power factor of La0.9M0.1FeO3 (M ¼ Ca and Ba) system: Structural, band gap and electrical transport evaluations. Phys. B 529, 1–8 (2018)

    CAS  Google Scholar 

  29. M. Idrees, M. Nadeem, M. Shah, T.J. Shin, Anomalous octahedral distortions in LaFe1−xNixO3. J. Phys. D 44, 1–8 (2011)

    Google Scholar 

  30. N.S. Goncalves, J.A. Carvalho, Z.M. Lima, J.M. Sasaki, Size–strain study of NiO nanoparticles by X-ray powder diffraction line broadening. Mater. Lett. 72, 36–38 (2012)

    CAS  Google Scholar 

  31. W. Ncib, A.B.J. Kharrat, M. Saadi, K. Khirouni, N. Chniba-Boudjada, W. Boujelben, Structural, AC conductivity, conduction mechanism and dielectric properties of La0.62Eu0.05Ba0.33Mn0.85Fe0.15O3 ceramic compound. J. Mater. Sci. 30, 18391–18404 (2019)

    CAS  Google Scholar 

  32. A.R. James, K. Srinivas, Low temperature fabrication and impedance spectroscopy of PMN-PT ceramics. Mater. Res. Bull. 34, 1301 (1999)

    CAS  Google Scholar 

  33. H. Baaziz, N.K. Maaloul, A. Tozri, H. Rahmouni, S. Mizouri, K. Khirouni, E. Dhahri, Effect of sintering temperature and grain size on the electrical transport properties of La0.67Sr0.33MnO3 manganite. Chem. Phys. Lett. 640, 77 (2015)

    CAS  Google Scholar 

  34. S. Hcini, A. Selmi, H. Rahmouni, A. Omri, M.L. Bouazizi, Polaronic relaxation in LaFeO3, Structural, dielectric and complex impedance properties of T0.6Co0.4Fe2O4 (T= Ni, Mg) ferrite nanoparticles prepared by sol gel method. Ceram. Int. 43, 2529 (2017)

    CAS  Google Scholar 

  35. C. Chen, K.B. Xu, Y.M. Cui, C.C. Wang, Polaronic relaxation in LaFeO3. Mater. Lett. 89, 153–155 (2012)

    CAS  Google Scholar 

  36. T.L. Rao, M.K. Pradhan, M. Chandrasekhar, P.V. Ramakrishna, S. Dash, J. Phys. 31, 345803–345814 (2019)

    CAS  Google Scholar 

  37. D. Johnson, Z. Plot, Z-View Electrochemical Impedance Software, Version 2.3b (Scribner Associates, Inc., North Carolina, 2000).

  38. H. Trabelsi, M. Bejar, E. Dhahri, M. Sajieddine, K. Khirouni, P.R. Prezas, B.M.G. Melo, M.A. Valente, M.P.F. Garça, Effect of oxygen vacancies on SrTiO3 electrical properties. J. Alloys Compd. 723, 894–903 (2017)

    CAS  Google Scholar 

  39. S.M. Khetre, H.V. Jadhav, P.N. Jagadale, S.R. Kulal, S.R. Bamane, Studies on electrical and dielectric properties of LaFeO3. Adv. Appl. Sci. Res 2(4), 503–511 (2011)

    CAS  Google Scholar 

  40. P.B. Koli, K.H. Kapadnis, U.G. Deshpande, Methanol gas sensing properties of pervoskite LaFeO3 nanoparticles doped by transition metals Cr3+ and Co2+. J. Chem. Pharm. Res. 9, 253–259 (2017)

    CAS  Google Scholar 

  41. L. Suna, H. Qina, K. Wangb, M. Zhaoa, J. Hua, Structure and electrical properties of nanocrystalline La1-xBaxFeO3 for gas sensing application. Mater. Chem. Phys. 125, 305–308 (2011)

    Google Scholar 

  42. M. Khelifi, R. M’nassri, A. Selmi, H. Rahmouni, K. Khirouni, N. Chniba Boudjada, A. Cheikhrouhou, Investigation of magnetic and transport properties of PrCa(MnCo)O prepared by solid state process. J. Magn. Magn. Mater. 423, 20–26 (2017)

    CAS  Google Scholar 

  43. C.W. Wu, Y.H. Nan, Y. Lin, Deng, Giant dielectric permittivity observed in Li and Ti doped NiO. Phys. Rev. Lett. 89, 217601 (2002)

    Google Scholar 

  44. G. Gowri, R. Saravanan, S. Sasikumar, I.B. Shameem Banu, Exchange bias effect, ferroelectric property, primary bonding and charge density analysis of La1-xCexFeO3 multiferroics. Mater. Res. Bull. 118, 110512 (2019)

    Google Scholar 

  45. M. Idrees, M. Nadeem, M. Mehmood, M. Atif, K.H. Chae, M.M. Hassan, Impedance spectroscopic investigation of delocalization effects of disorder induced by Ni doping in LaFeO3. Acta Mater. 44, 105401 (2011)

    Google Scholar 

  46. G.R. Hearne, M.P. Pasternak, R.D. Taylor, P. Lacorre, Electronic structure and magnetic properties of LaFeO3 at high pressure. Phys. Rev. B 51, 11495–11500 (1995)

    CAS  Google Scholar 

  47. I. Bhat, S. Husain, W. Khan, S.I. Patil, Effect of Zn doping on structural, magnetic and dielectric properties of LaFeO3 synthesized through sol–gel auto-combustion process. Mater. Res. Bull. 48, 4506–4512 (2013)

    CAS  Google Scholar 

  48. A. Sieradzki, S. Pawlus, S.N. Tripathy, A. Gągor, M. Ptak, M. Paluch, M. Mączka, Dielectric relaxation and anhydrous proton conduction in [C2H5NH3][Na0.5Fe0.5(HCOO)3] metal-organic framework. Dalton Trans. 46, 3681–3687 (2017)

    CAS  Google Scholar 

  49. A. Molak, M. Paluch, S. Pawlus, J. Klimontko, Z. Ujma, I. Gruszka, J. Phys. D 38, 1450–1460 (2005)

    CAS  Google Scholar 

  50. M. Wubbenhorst, J. Van Turnhout, J. Non-Cryst, Solids 305, 40–49 (2002)

    CAS  Google Scholar 

  51. R. Bergman, General susceptibility functions for relaxations in disordered systems. J. Appl. Phys. 88, 1356 (2000)

    CAS  Google Scholar 

  52. E. Barsoukov, J.R. Macdonald, Impedance Spectroscopy Theory, Experiment and Applications, 2nd edn. (Wiley, New York, 2005)

    Google Scholar 

  53. S. Mazen, N.I. Abu-Elsaad, Structural, magnetic and electrical properties of the lithium ferrite obtained by ball milling and heat treatment. Appl. Nanosci. 5, 105–114 (2015)

    CAS  Google Scholar 

  54. A.K. Jonscher, Universal Relaxation Law (Chelsea Dielectric Press, London, 1996)

    Google Scholar 

  55. K. Funke, Jump relaxation in solid electrolytes. Prog. Solid State Chem. 22, 111–195 (1993)

    CAS  Google Scholar 

  56. M. Pollak, On the frequency dependence of conductivity in amorphous solids. Philos. Mag. 23, 519–542 (1971)

    CAS  Google Scholar 

  57. S. Mollah, K.K. Som, K. Bose, B.K. Chaudhuri, Ac conductivity in Bi4Sr3Ca3CuyOx (y=0–5) and Bi4Sr3Ca3−zLizCu4Ox (z=0.1–1.0) semiconducting oxide glasses. J. Appl. Phys. 74, 931 (1993)

    CAS  Google Scholar 

  58. A. Ghosh, Frequency-dependent conductivity in bismuth-vanadate glassy semiconductors. Phys. Rev. B 41, 1479 (1990)

    CAS  Google Scholar 

  59. M. Megdiche, C. Perrin-Pellegrino, M. Gargouri, Conduction mechanism study by overlapping large-polaron tunnelling model in SrNiP2O7 ceramic compound. J. Alloys Compd. 584, 209–215 (2014)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by national funds from FCT – Fundação para a Ciência e a Tecnologia, I.P., within the project UID/04564/2020. Access to TAIL-UC facility funded under QREN-Mais Centro Project No. ICT_2009_02_012_1890 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Benali.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benali, E.M., Benali, A., Bejar, M. et al. Effect of annealing temperature on structural, morphological and dielectric properties of La0.8Ba0.1Ce0.1FeO3 perovskite. J Mater Sci: Mater Electron 31, 16220–16234 (2020). https://doi.org/10.1007/s10854-020-04140-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04140-w

Navigation