Skip to main content

Advertisement

Log in

Feasibility study of doped SnO2 nanomaterial for electronic nose towards sensing biomarkers of lung cancer

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study electrochemical sensors, based on undoped and doped (Cr, Mn, Cu and Zn) SnO2 as a sensing electrode material, were fabricated and used to detect acetone (10–600 ppb) and toluene (1–40 ppb). The sol–gel synthesized nanomaterial was characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), UV–Visible (UV–Vis) spectroscopy, Fourier transform infrared (FTIR) spectroscopy and Contact angle (CA). Electrochemical sensing characteristics were determined from the Cyclic Voltammetry (CV), Differential Pulse Voltammetry (DPV) and Electrochemical Impedance Spectroscopic analysis (EIS). The electrochemical results reveal that the sensors’ response to acetone was highest with copper doping whereas in case of toluene sensing zinc dopants showed highest sensitivity. This work demonstrated that acetone and toluene sensing is selective with copper and zinc doping and these doped SnO2 nanomaterials can be used for the formation of array/electronic nose and help in simultaneous detection of acetone and toluene both.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. S. Ansari, H. Fouad, H. Shin, Z. Ansari, Electrochemical enzyme-less urea sensor based on nano-tin oxide synthesized by hydrothermal technique. Chem. Biol. Interact. 242, 45–49 (2015)

    Article  CAS  Google Scholar 

  2. A. Umar, K. Singh, S. Mehta, H. Fouad, O. Alothman, Highly sensitive enzyme-less glucose biosensor based on α-Fe2O3 nanoparticles. Nanosci. Nanotechnol. Lett. 10(3), 429–434 (2018)

    Article  Google Scholar 

  3. M. Obaid, O. Fadali, B. Lim, H. Fouad, N. Barakat, Super-hydrophilic and highly stable in oils polyamide-polysulfone composite membrane by electrospinning. Mater. Lett. 138, 196–199 (2015)

    Article  CAS  Google Scholar 

  4. N. Parveen, S. Ansari, S. Ansari, H. Fouad, N. Abd El-Salam, M. Cho, Solid-state symmetrical supercapacitor based on hierarchical flower-like nickel sulfide with shape-controlled morphological evolution. Electrochim. Acta 268, 82–93 (2018)

    Article  CAS  Google Scholar 

  5. R.M. Kaur, A. Umar, S. Mehta, S. Singh, S. Kansal, H. Fouad, O. Alothman, Materials 11(11), 2254 (2018)

    Article  Google Scholar 

  6. L. Pauling, A.B. Robinson, R. Teranishi, P. Cary, Quantitative analysis of urine vapor and breath by gas-liquid partition chromatography. Proc. Natl. Acad. Sci. USA 68, 2374–2376 (1971)

    Article  CAS  Google Scholar 

  7. S.M. Gordon, J.P. Szidon, B.K. Krotoszynski, R.D. Gibbons, H.J. O'Neill, Volatile organic compounds in exhaled air from patients with lung cancer. Clin. Chem. 31, 1278–1282 (1985)

    Article  CAS  Google Scholar 

  8. M. Phillips, K. Gleeson, J.M. Hughes, J. Greenberg, R.N. Cataneo, L. Baker, W.P. McVay, Volatile organic compounds in breath as markers of lung cancer: a cross-sectional study. Lancet 353, 1930–1933 (1999). https://doi.org/10.1016/S0140-6736(98)07552-7

    Article  CAS  Google Scholar 

  9. M. Phillips, R.N. Cataneo, A.R. Cummin, A.J. Gagliardi, K. Gleeson, J. Greenberg, R.A. Maxfield, W.N. Rom, Detection of lung cancer with volatile markers in the breath. Chest 123, 2115–2123 (2003). https://doi.org/10.1378/chest.123.6.2115

    Article  CAS  Google Scholar 

  10. Y. Saalberg, M. Wolff, VOC breath biomarkers in lung cancer. Clin. Chim. Acta 459, 5–9 (2016)

    Article  CAS  Google Scholar 

  11. C.J. Wysocki, P. Dalton, M.J. Brody, H.J. Lawley, Acetone odor and irritation thresholds obtained from acetone-exposed factory workers and from control (occupationally unexposed) subjects. Am. Ind. Hygiene Assoc. J. 58(10), 704–712 (1997)

    Article  CAS  Google Scholar 

  12. S. Liu, F. Zhang, H. Li, T. Chen, Y. Wang, Acetone detection properties of single crystalline tungsten oxide plates synthesized by hydrothermalmethod using cetyltrimethyl ammonium bromide supermolecular template. Sens. Actuators B 162(1), 259–268 (2012)

    Article  CAS  Google Scholar 

  13. T. Xiao, X.-Y. Wang, Z.-H. Zhao et al., Highly sensitive and selective acetone sensor based on C-doped WO3 for potential diagnosis of diabetes mellitus Dedicated to Prof Xinquan Xin on the occasion of his 80th birthday. Sens. Actuators B 199, 210–219 (2014)

    Article  CAS  Google Scholar 

  14. T.D.C. Minh, D.R. Blake, P.R. Galassetti, The clinical potential of exhaled breath analysis for diabetes mellitus. Diabetes Res. Clin. Pract. 97(2), 195–205 (2012)

    Article  Google Scholar 

  15. H. Huang, J. Zhou, S. Chen, L. Zeng, Y. Huang, Sens. Actuator B-Chem. 101, 316 (2004)

    Article  CAS  Google Scholar 

  16. M. Righettoni, A. Tricoli, S.E. Pratsinis, Si:WO3 sensors for highly selective detection of acetone for easy diagnosis of diabetes by breath analysis. Anal. Chem. 82, 3581–3587 (2010)

    Article  CAS  Google Scholar 

  17. S. Kim, S. Park, S. Park, C. Lee, Acetone sensing of Au and Pd-decorated WO3 nanorod sensors. Sens. Actuators B Chem. 209, 180–185 (2015)

    Article  CAS  Google Scholar 

  18. B.L. Zhu, C.S. Xie, W.Y. Wang, K.J. Huang, J.H. Hu, Improvement in gas sensitivity of ZnO thick film to volatile organic compounds (VOCs) by adding TiO2. Mater. Lett. 58, 624–629 (2004)

    Article  CAS  Google Scholar 

  19. L. Wang et al., Concave Cu2O octahedral nanoparticles as an advanced sensing material for benzene (C6H6) and nitrogen dioxide (NO2) detection. Sens. Actuators B Chem. 223, 311–317 (2016)

    Article  CAS  Google Scholar 

  20. Y. Zeng et al., Enhanced toluene sensing characteristics of TiO2-doped flowerlike ZnO nanostructures. Sens. Actuators B Chem. 140, 73–78 (2009)

    Article  CAS  Google Scholar 

  21. M. Nakagawa, S. Kawabata, K. Nishiyama, K. Utsunomiya, I. Yamamoto, T. Wada, Y. Yamashita, N. Yamashita, Sens. Actuator B-Chem. 34, 334 (1996)

    Article  CAS  Google Scholar 

  22. Q.-H. Wu, J. Li, S.-G. Sun, Nano SnO2 gas sensors. Curr. Nanosci. 6(5), 525–538 (2010)

    Article  CAS  Google Scholar 

  23. M.E. Franke, T.J. Koplin, U. Simon, Metal and metal oxide nanoparticles in chemiresistors: does the nanoscale matter? Small 2(1), 36–50 (2006)

    Article  CAS  Google Scholar 

  24. N. Yamazoe, New approaches for improving semiconductor gas sensors. Sens. Actuators B 5(1–4), 7–19 (1991)

    Article  CAS  Google Scholar 

  25. Y.-F. Sun et al., Metal oxide nanostructures and their gas sensing properties: a review. Sensors 12(3), 2610–2631 (2012)

    Article  CAS  Google Scholar 

  26. S.M. Sedghi, Y. Mortazavi, A. Khodadadi, Low temperature CO and CH4 dual selective gas sensor using SnO2 quantum dots prepared by sonochemical method. Sens. Actuators B 145(1), 7–12 (2010)

    Article  Google Scholar 

  27. D.-F. Zhang et al., Size-controllable one-dimensinal SnO2 nanocrystals: synthesis, growth mechanism, and gas sensing property. Phys. Chem. Chem. Phys. 8(42), 4874–4880 (2006)

    Article  CAS  Google Scholar 

  28. Q. Lipeng et al., The template-free synthesis of square-shaped SnO2 nanowires: the temperature effect and acetone gas sensors. Nanotechnology 19(18), 185705 (2008)

    Article  Google Scholar 

  29. A. Kolmakov et al., Enhanced gas sensing by individual SnO2 nanowires and nanobelts functionalized with Pd catalyst particles. Nano Lett. 5(4), 667–673 (2005)

    Article  CAS  Google Scholar 

  30. Y.J. Kwon et al., Selective improvement of NO2 gas sensing behavior in SnO2 nanowires by ion-beam irradiation. ACS Appl. Mater. Interfaces 8(21), 13646–13658 (2016)

    Article  CAS  Google Scholar 

  31. T. Van Dang et al., Chlorine gas sensing performance of on-chip grown ZnO, WO3, and SnO2 nanowire sensors. ACS Appl. Mater. Interfaces 8(7), 4828–4837 (2016)

    Article  Google Scholar 

  32. M. Sun, Y. Du, W. Hao, H. Xu, Y. Yu, T. Wang, Fabrication and wettability of ZnO nanorod array. J. Mater. Sci. Technol. 25, 53–57 (2009)

    Article  CAS  Google Scholar 

  33. X. Fang, Z. Yu, X. Sun, X. Liu, F. Qin, Formation of superhydrophobic boehmite film on glass substrate by Sol-gel method. Front. Chem. Eng. China 3, 97–101 (2009). https://doi.org/10.1007/s11705-009-0148-y

    Article  CAS  Google Scholar 

  34. B.L. Caetano et al., Mechanisms of SnO2 nanoparticles formation and growth in acid ethanol solution derived from SAXS and combined Raman–XAS time-resolved studies. Chem. Mater. 26, 6777–6785 (2014)

    Article  CAS  Google Scholar 

  35. M. Karmaoui et al., One-step synthesis, structure, and band gap properties of SnO2 nanoparticles made by a low temperature nonaqueous sol–gel technique. ACS Omega 3, 13227–13238 (2018)

    Article  CAS  Google Scholar 

  36. M.P. Subramaniam, G. Arunachalam, R. Kandasamy, P. Veluswamy, I. Hiroya, Effect of pH and annealing temperature on the properties of tin oxide nanoparticles prepared by sol–gel method. J. Mater. Sci. Mater. Electron. 29, 658–666 (2018)

    Article  CAS  Google Scholar 

  37. D. Varshney, K. Verma, Effect of stirring time on size and dielectric properties of SnO2 nanoparticles prepared by co-precipitation method. J. Mol. Struct. 1034, 216–222 (2013)

    Article  CAS  Google Scholar 

  38. E.P. Randviir, A cross examination of electron transfer rate constants for carbon screen-printed electrodes using Electrochemical Impedance Spectroscopy and cyclic voltammetry. Electrochim. Acta 286, 179–186 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Zeenat Khatoon is thankful to Indian Council of Medical Research, New Delhi for providing Senior Research Fellowship and UGC Non-NET fellowship, Government of India. H K Seo acknowledges support of the National Research Foundation of Korea (NRF) grant funded by Government of Korea (MSIT, No. 2018R1A4A1025528). Authors acknowledge the Central Instrumentation Facility and DST-PURSE Programme of Jamia Millia Islamia, New Delhi. This work is supported by Researchers Supporting Project number (RSP-2020/117), King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to H. Fouad or S. G. Ansari.

Ethics declarations

Conflict of interest

Authors declare there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khatoon, Z., Fouad, H., Seo, H.K. et al. Feasibility study of doped SnO2 nanomaterial for electronic nose towards sensing biomarkers of lung cancer. J Mater Sci: Mater Electron 31, 15751–15763 (2020). https://doi.org/10.1007/s10854-020-04137-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04137-5

Navigation