Skip to main content
Log in

Silver nanowire networks with preparations and applications: a review

  • Review
  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Due to the comprehensive performance on optoelectronics and mechanics, flexible electronics based on silver nanowires (AgNWs) network have attracted many attentions and achieved diverse functions comparing traditional electronic device. As more researches have been progressing, major advanced devices using AgNWs have been made, such as flexible optoelectronic devices, electromagnetic shielding, bio-robot’s components, and intelligence sensors and influence in human daily life. Comparing to the traditional transparent conductive material, such as indium tin oxide (ITO), AgNWs network performs more excellent in optoelectronics, mechanical properties and stability, and gradually appears on transparent flexible applications. However, a series of problems would be encountered in the fabrication process, such as geometric controllability, electronic and mechanical stability, and device manufacture. Plenty of studies on AgNWs for these interacting aspects have been conducted and achieved excellent progress. With these considerations, the latest progress to AgNWs network preparation and applications are reviewed in terms of manufacturing process, performance evaluation and enhancement, typical applications in this paper. The main challenges and prospects of the AgNWs network in future applications are briefly evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Copyright 2003, Chemistry of Materials

Fig. 3

Copyright 2004, Chemistry of Materials

Fig. 4

Copyright 2003, Nano Letters

Fig. 5
Fig. 6
Fig. 7

Copyright 2014, Journal of the American Chemical Society

Fig. 8

Copyright 2018, Nanoscale

Fig. 9
Fig. 10
Fig. 11

Copyright 2019, Advanced Materials

Fig. 12

Copyright 2013, ACS NANO

Fig. 13

Copyright 2010, ACS Nano

Fig. 14

Copyright 2014, ACS Nano

Fig. 15

Copyright 2020, Materials Research Express

Fig. 16

Copyright 2011, Angewandte Chemie International Edition

Fig. 17

Copyright 2018, Advanced Functional Materials

Fig. 18

Copyright 2012, Nature Materials

Fig. 19

Copyright 2015, Nano Letters

Fig. 20

Copyright 2020, ACS Applied Materials & Interfaces

Fig. 21

Copyright 2019, Advanced Functional Materials

Fig. 22

Copyright 2018, Materials & Design

Fig. 23

Copyright 2019, Nature Communications

Fig. 24
Fig. 25

Copyright 2018, Nano Energy

Similar content being viewed by others

References

  1. Y.N. Xia et al., One-dimensional nanostructures: Synthesis, characterization, and applications. Adv. Mater. 15(5), 353–389 (2003)

    CAS  Google Scholar 

  2. D. Leem et al., Efficient organic solar cells with solution-processed silver nanowire electrodes. Adv. Mater. 23(38), 4371–4375 (2011)

    CAS  Google Scholar 

  3. M. Hu et al., Flexible transparent PES/silver nanowires/PET sandwich-structured film for high-efficiency electromagnetic interference shielding. Langmuir 28(18), 7101–7106 (2012)

    CAS  Google Scholar 

  4. A.R. Madaria, A. Kumar, C. Zhou, Large scale, highly conductive and patterned transparent films of silver nanowires on arbitrary substrates and their application in touch screens. Nanotechnology 22, 24520124 (2011)

    Google Scholar 

  5. S. Coskun, E.S. Ates, H.E. Unalan, Optimization of silver nanowire networks for polymer light emitting diode electrodes. Nanotechnology 24, 12520212 (2013)

    Google Scholar 

  6. T. Kim et al., Uniformly interconnected silver-nanowire networks for transparent film heaters. Adv. Func. Mater. 23(10), 1250–1255 (2013)

    CAS  Google Scholar 

  7. M. Amjadi et al., Highly stretchable and sensitive strain sensor based on silver nanowire-elastomer nanocomposite. ACS Nano 8(5), 5154–5163 (2014)

    CAS  Google Scholar 

  8. C. Jiang et al., Hyaline and stretchable haptic interfaces based on serpentine-shaped silver nanofiber networks. Nano Energy 73, 104782 (2020)

    CAS  Google Scholar 

  9. J. Lee et al., A facile solution-phase approach to transparent and conducting ITO nanocrystal assemblies. J. Am. Chem. Soc. 134(32), 13410–13414 (2012)

    CAS  Google Scholar 

  10. J. van de Groep, P. Spinelli, A. Polman, Transparent conducting silver nanowire networks. Nano Lett. 12(6), 3138–3144 (2012)

    Google Scholar 

  11. D.S. Hecht, L. Hu, G. Irvin, Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures. Adv. Mater. 23(13), 1482–1513 (2011)

    CAS  Google Scholar 

  12. W. Zhao, J. Zhu, H. Chen, Photochemical synthesis of Au and Ag nanowires on a porous aluminum oxide template. J. Cryst. Growth 258(1–2), 176–180 (2003)

    CAS  Google Scholar 

  13. Z. Jiang et al., Growth of silver nanowires on metal plates by conventional redox displacement. Chem. Phys. Lett. 374(5–6), 645–649 (2003)

    CAS  Google Scholar 

  14. B.H. Hong et al., Ultrathin single-crystalline silver nanowire arrays formed in an ambient solution phase. Science 294(5541), 348–351 (2001)

    CAS  Google Scholar 

  15. J. Zhu et al., Synthesis of silver nanowires by a sonoelectrochemical method. Inorg. Chem. Commun. 5(4), 242–244 (2002)

    CAS  Google Scholar 

  16. D. Zhang et al., Wet chemical synthesis of silver nanowire thin films at ambient temperature. Chem. Mater. 16(5), 872–876 (2004)

    CAS  Google Scholar 

  17. Y. Sun et al., Crystalline silver nanowires by soft solution processing. Nano Lett. 2(2), 165–168 (2002)

    CAS  Google Scholar 

  18. J. Choi et al., Hexagonally arranged monodisperse silver nanowires with adjustable diameter and high aspect ratio. Chem. Mater. 15(3), 776–779 (2003)

    CAS  Google Scholar 

  19. J. Sloan et al., Capillarity and silver nanowire formation observed in single walled carbon nanotubes. Chem. Commun. 8, 699–700 (1999)

    Google Scholar 

  20. Y. Wu et al., Templated synthesis of highly ordered mesostructured nanowires and nanowire arrays. Nano Lett. 4(12), 2337–2342 (2004)

    CAS  Google Scholar 

  21. S. Behrens et al., Silver nanoparticle and nanowire formation by microtubule templates. Chem. Mater. 16(16), 3085–3090 (2004)

    CAS  Google Scholar 

  22. Q. Gu et al., DNA nanowire fabrication. Nanotechnology 17(1), R14–R25 (2006)

    CAS  Google Scholar 

  23. N. Li et al., Fabrication of metal nanostructures on DNA templates. ACS Appl. Mater. Interfaces 11(15), 13835–13852 (2019)

    CAS  Google Scholar 

  24. J. Lu et al., DNA-templated photo-induced silver nanowires: Fabrication and use in detection of relative humidity. Biophys. Chem. 145(2–3), 91–97 (2009)

    CAS  Google Scholar 

  25. Y. Zhu et al., Flexible transparent electrodes based on silver nanowires: material synthesis, fabrication, performance, and applications. Adv. Mater. Technol. 4(10), 1900413 (2019)

    CAS  Google Scholar 

  26. X.J. Xu et al., Synthetic control of large-area, ordered silver nanowires with different diameters. Mater. Lett. 61(1), 19–22 (2007)

    CAS  Google Scholar 

  27. W.G. Ju, X.H. Zhang, S.K. Wu, Wet chemical synthesis of Ag nanowires array at room temperature. Chem. Lett. 34(4), 510–511 (2005)

    CAS  Google Scholar 

  28. X. Xiang et al., Progress in application and preparation of silver nanowires. Rare Met. 35(4), 289–298 (2016)

    CAS  Google Scholar 

  29. Y. Sun, Silver nanowires—unique templates for functional nanostructures. Nanoscale 2(9), 1626–1642 (2010)

    CAS  Google Scholar 

  30. P. Zhang et al., Silver nanowires: Synthesis technologies, growth mechanism and multifunctional applications. Mater. Sci. Eng. B 223, 1–23 (2017)

    CAS  Google Scholar 

  31. S. Coskun, B. Aksoy, H.E. Unalan, Polyol synthesis of silver nanowires: an extensive parametric study. Cryst. Growth Des. 11(11), 4963–4969 (2011)

    CAS  Google Scholar 

  32. Y. Sun et al., Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the presence of seeds and poly(vinyl pyrrolidone). Chem. Mater. 14(11), 4736–4745 (2002)

    CAS  Google Scholar 

  33. Y. Sun et al., Polyol Synthesis of uniform silver nanowires: a plausible growth mechanism and the supporting evidence. Nano Lett. 3(7), 955–960 (2003)

    CAS  Google Scholar 

  34. Z. Huang et al., A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos. Sci. Technol. 63(15), 2223–2253 (2003)

    CAS  Google Scholar 

  35. W. Xu, S. Zhang, W. Xu, Recent progress on electrohydrodynamic nanowire printing. Sci. China Mater. 62(11), 1709–1726 (2019)

    Google Scholar 

  36. Z. Zhang et al., Electrospinning of Ag Nanowires/polyvinyl alcohol hybrid nanofibers for their antibacterial properties. Mater. Sci. Eng. C 78, 706–714 (2017)

    CAS  Google Scholar 

  37. M.T. Satoungar et al., Electrospinning of polylactic acid/silver nanowire biocomposites: antibacterial and electrical resistivity studies. Polym. Compos. 39(S1), E65–E72 (2018)

    CAS  Google Scholar 

  38. J. Choi et al., Junction-free electrospun Ag fiber electrodes for flexible organic light-emitting diodes. Small 14(7), 1702567 (2018)

    Google Scholar 

  39. H. Liu et al., Fabrication and application of highly stretchable conductive fiber-based electrode of epoxy/NBR electrospun fibers spray-coated with AgNW/PU composites. Macromol. Chem. Phys. 220(4), 1800387 (2019)

    Google Scholar 

  40. P. Hsu et al., Electrolessly deposited electrospun metal nanowire transparent electrodes. J. Am. Chem. Soc. 136(30), 10593–10596 (2014)

    CAS  Google Scholar 

  41. K. Hong et al., Electrospun polymer electrolyte nanocomposites for solid-state energy storage. Composite B 152, 275–281 (2018)

    CAS  Google Scholar 

  42. Y. Li et al., Pseudo-biological highly performance transparent electrodes based on capillary force-welded hybrid AgNW network. IEEE Access 7, 177944–177953 (2019)

    Google Scholar 

  43. J.V. Wittemann et al., Silver catalyzed ultrathin silicon nanowires grown by low-temperature chemical-vapor-deposition. J. Appl. Phys. 107(9), 096105 (2010)

    Google Scholar 

  44. D. Li, Y. Xia, Electrospinning of nanofibers: reinventing the wheel? Adv. Mater. 16(14), 1151–1170 (2004)

    CAS  Google Scholar 

  45. S. Zhu et al., Transferable self-welding silver nanowire network as high performance transparent flexible electrode. Nanotechnology 24(33), 335202 (2013)

    Google Scholar 

  46. S.H. Lee, S. Lim, H. Kim, Smooth-surface silver nanowire electrode with high conductivity and transparency on functional layer coated flexible film. Thin Solid Films 589, 403–407 (2015)

    CAS  Google Scholar 

  47. A.R. Madaria, A. Kumar, C. Zhou, Large scale, highly conductive and patterned transparent films of silver nanowires on arbitrary substrates and their application in touch screens. Nanotechnology 22(24), 245201 (2011)

    Google Scholar 

  48. L. Yang et al., Solution-processed flexible polymer solar cells with silver nanowire electrodes. ACS Appl. Mater. Interfaces 3(10), 4075–4084 (2011)

    CAS  Google Scholar 

  49. M.S. Miller et al., Silver nanowire/optical adhesive coatings as transparent electrodes for flexible electronics. ACS Appl. Mater. Interfaces 5(20), 10165–10172 (2013)

    CAS  Google Scholar 

  50. Y. Joo et al., Silver nanowire-embedded PDMS with a multiscale structure for a highly sensitive and robust flexible pressure sensor. Nanoscale 7(14), 6208–6215 (2015)

    CAS  Google Scholar 

  51. J.C. Goak et al., Stable heating performance of carbon nanotube/silver nanowire transparent heaters. Appl. Surf. Sci. 510, 145445 (2020)

    CAS  Google Scholar 

  52. K. Jeong et al., Transparent Conductive Silver Nanowire Embedded Polyimide/Reduced Graphene Oxide Hybrid Film. J. Nanosci. Nanotechnol. 20(8), 4866–4872 (2020)

    Google Scholar 

  53. Jiang, Z., et al., Highly Stretchable Metallic Nanowire Networks Reinforced by the Underlying Randomly Distributed Elastic Polymer Nanofibers via Interfacial Adhesion Improvement. ADVANCED MATERIALS, 2019. 31:190344637.

  54. Y. He et al., Microstructured hybrid nanocomposite flexible piezoresistive sensor and its sensitivity analysis by mechanical finite-element simulation. Nanotechnology 31(18), 185502–185502 (2020)

    Google Scholar 

  55. N.Y. Al-Attabi et al., Silver nanowire as an efficient filler for high conductive polyurethane composites. Mater. Sci. Technol. 35(4), 462–468 (2019)

    CAS  Google Scholar 

  56. X. He et al., A highly conductive, flexible, transparent composite electrode based on the lamination of silver nanowires and polyvinyl alcohol. J. Mater. Chem. C 2(45), 9737–9745 (2014)

    CAS  Google Scholar 

  57. G. Namgung et al., Diffusion-driven Al-doping of ZnO nanorods and stretchable gas sensors made of doped ZnO nanorods/Ag nanowires bilayers. ACS Appl. Mater. Interfaces 11(1), 1411–1419 (2018)

    Google Scholar 

  58. T. Chen et al., Facile preparation of high conductive silver electrodes by dip-coating followed by quick sintering. R. Soc. Open Sci. 7(1), 191571 (2020)

    Google Scholar 

  59. D. Li et al., Printable transparent conductive films for flexible electronics. Adv. Mater. 30(10), 1704738 (2018)

    Google Scholar 

  60. Y. Zhang et al., Facile preparation of flexible and highly stable graphene oxide-silver nanowire hybrid transparent conductive electrode. Mater. Res. Express 7(1), 16413 (2020)

    CAS  Google Scholar 

  61. L. Jia et al., Highly efficient and reliable transparent electromagnetic interference shielding film. ACS Appl. Mater. Interfaces 10(14), 11941–11949 (2018)

    CAS  Google Scholar 

  62. D.J. Lee et al., Extraction of light using random nanocone on poly(vinyl-butyral) for flexible OLEDs. Sci. Rep. 9(1), 1–8 (2019)

    Google Scholar 

  63. Y. Kim et al., Roll-to-roll redox-welding and embedding for silver nanowire network electrodes. Nanoscale 10(39), 18627–18634 (2018)

    CAS  Google Scholar 

  64. A.R. Madaria et al., Uniform, highly conductive, and patterned transparent films of a percolating silver nanowire network on rigid and flexible substrates using a dry transfer technique. Nano Res. 3(8), 564–573 (2010)

    CAS  Google Scholar 

  65. R. Zhu et al., Improved adhesion of interconnected TiO2 nanofiber network on conductive substrate and its application in polymer photovoltaic devices. Appl. Phys. Lett. 93, 0131021 (2008)

    Google Scholar 

  66. W. Gaynor, J. Lee, P. Peumans, Fully Solution-processed inverted polymer solar cells with laminated nanowire electrodes. ACS Nano 4(1), 30–34 (2009)

    Google Scholar 

  67. J. Lee et al., Semitransparent organic photovoltaic cells with laminated top electrode. Nano Lett. 10(4), 1276–1279 (2010)

    CAS  Google Scholar 

  68. X. Zeng et al., A new transparent conductor: silver nanowire film buried at the surface of a transparent polymer. Adv. Mater. 22(40), 4484–4488 (2010)

    CAS  Google Scholar 

  69. Z. Yu et al., Highly flexible silver nanowire electrodes for shape-memory polymer light-emitting diodes. Adv. Mater. 23(5), 664–668 (2011)

    CAS  Google Scholar 

  70. L. Hu et al., Scalable coating and properties of transparent, flexible, silver nanowire electrodes. ACS Nano 4(5), 2955–2963 (2010)

    CAS  Google Scholar 

  71. H. Lu et al., Inkjet printed silver nanowire network as top electrode for semi-transparent organic photovoltaic devices. Appl. Phys. Lett. 106(9), 093302 (2015)

    Google Scholar 

  72. D.J. Finn, M. Lotya, J.N. Coleman, Inkjet printing of silver nanowire networks. ACS Appl. Mater. Interfaces 7(17), 9254–9261 (2015)

    CAS  Google Scholar 

  73. J. Liang, K. Tong, Q. Pei, A water-based silver-nanowire screen-print ink for the fabrication of stretchable conductors and wearable thin-film transistors. Adv. Mater. 28(28), 5986–5996 (2016)

    CAS  Google Scholar 

  74. P. Wang et al., Direct printed silver nanowire thin film patterns for flexible transparent heaters with temperature gradients. RSC Adv. 5(119), 98412–98418 (2015)

    CAS  Google Scholar 

  75. J.D. Park, S. Lim, H. Kim, Patterned silver nanowires using the gravure printing process for flexible applications. Thin Solid Films 586, 70–75 (2015)

    CAS  Google Scholar 

  76. K. Park et al., High-resolution and large-area patterning of highly conductive silver nanowire electrodes by reverse offset printing and intense pulsed light irradiation. ACS Appl. Mater. Interfaces 11(16), 14882–14891 (2019)

    CAS  Google Scholar 

  77. J. Lee et al., Very long Ag nanowire synthesis and its application in a highly transparent, conductive and flexible metal electrode touch panel. Nanoscale 4(20), 6408–6414 (2012)

    CAS  Google Scholar 

  78. P. Hsu et al., Performance enhancement of metal nanowire transparent conducting electrodes by mesoscale metal wires. Nat. Commun. 4, 2522 (2013)

    Google Scholar 

  79. T. Gao et al., Uniform and ordered copper nanomeshes by microsphere lithography for transparent electrodes. Nano Lett. 14(4), 2105–2110 (2014)

    CAS  Google Scholar 

  80. E.C. Garnett et al., Self-limited plasmonic welding of silver nanowire junctions. Nat. Mater. 11(3), 241–249 (2012)

    CAS  Google Scholar 

  81. S. Kang et al., Capillary printing of highly aligned silver nanowire transparent electrodes for high-performance optoelectronic devices. Nano Lett. 15(12), 7933–7942 (2015)

    CAS  Google Scholar 

  82. S. An et al., Supersonic cold spraying for energy and environmental applications: one-step scalable coating technology for advanced micro- and nanotextured materials. Adv. Mater. 32(2), 1905028 (2019)

    Google Scholar 

  83. T. Kim et al., Efficient heat spreader using supersonically sprayed graphene and silver nanowire. Appl. Therm. Eng. 165, 114572 (2020)

    Google Scholar 

  84. C. Jiang, J. Song, An ultrahigh-resolution digital image sensor with pixel size of 50 nm by vertical nanorod arrays. Adv. Mater. 27(30), 4454–4460 (2015)

    CAS  Google Scholar 

  85. R.M. Mutiso et al., Integrating Simulations and experiments to predict sheet resistance and optical transmittance in nanowire films for transparent conductors. ACS Nano 7(9), 7654–7663 (2013)

    CAS  Google Scholar 

  86. A. Graff et al., Silver nanowires. Eur. Phys. J. D 34(1–3), 263–269 (2005)

    CAS  Google Scholar 

  87. D. Yang et al., Effect of flash light sintering on silver nanowire electrode networks. Materials 13, 4042 (2020)

    Google Scholar 

  88. S. De et al., Silver nanowire networks as flexible, transparent, conducting films: extremely high DC to optical conductivity ratios. ACS Nano 3(7), 1767–1774 (2009)

    CAS  Google Scholar 

  89. R.C. Tenent et al., Ultrasmooth, large-area, high-uniformity, conductive transparent single-walled-carbon-nanotube films for photovoltaics produced by ultrasonic spraying. Adv. Mater. 21(31), 3210–3216 (2009)

    CAS  Google Scholar 

  90. C. Liu, X. Yu, Silver nanowire-based transparent, flexible, and conductive thin film. Nanoscale Res. Lett. 6(1), 1–8 (2011)

    CAS  Google Scholar 

  91. Z. Yu et al., Silver nanowire-polymer composite electrodes for efficient polymer solar cells. Adv. Mater. 23(38), 4453–4457 (2011)

    CAS  Google Scholar 

  92. Z. Fang et al., Novel nanostructured paper with ultrahigh transparency and ultrahigh haze for solar cells. Nano Lett. 14(2), 765–773 (2014)

    CAS  Google Scholar 

  93. A. Kim et al., Highly transparent low resistance ZnO/Ag nanowire/ZnO composite electrode for thin film solar cells. ACS Nano 7(2), 1081–1091 (2013)

    CAS  Google Scholar 

  94. Y. Ahn, Y. Jeong, Y. Lee, Improved thermal oxidation stability of solution-processable silver nanowire transparent electrode by reduced graphene oxide. ACS Appl. Mater. Interfaces 4(12), 6410–6414 (2012)

    CAS  Google Scholar 

  95. J. Liang et al., Silver nanowire percolation network soldered with graphene oxide at room temperature and its application for fully stretchable polymer light-emitting diodes. ACS Nano 8(2), 1590–1600 (2014)

    CAS  Google Scholar 

  96. C. Mayousse et al., Stability of silver nanowire based electrodes under environmental and electrical stresses. Nanoscale 7(5), 2107–2115 (2015)

    CAS  Google Scholar 

  97. S. Kim et al., Multi-purpose overcoating layers based on PVA/silane hybrid composites for highly transparent, flexible, and durable AgNW/PEDOT:PSS films. RSC Adv. 6(23), 19280–19287 (2016)

    CAS  Google Scholar 

  98. W. Xiong et al., Highly conductive, air-stable silver nanowire@Iongel composite films toward flexible transparent electrodes. Adv. Mater. 28(33), 7167–7172 (2016)

    CAS  Google Scholar 

  99. X. Zhang et al., Large-size graphene microsheets as a protective layer for transparent conductive silver nanowire film heaters. Carbon 69, 437–443 (2014)

    CAS  Google Scholar 

  100. G. Liu et al., Comprehensive stability improvement of silver nanowire networks via self-assembled mercapto inhibitors. ACS Appl. Mater. Interfaces 10(43), 37699–37708 (2018)

    CAS  Google Scholar 

  101. S.J. Lee et al., A roll-to-roll welding process for planarized silver nanowire electrodes. Nanoscale 6(20), 11828–11834 (2014)

    CAS  Google Scholar 

  102. J. Lee et al., Room-temperature nanosoldering of a very long metal nanowire network by conducting-polymer-assisted joining for a flexible touch-panel application. Adv. Funct. Mater. 23(34), 4171–4176 (2013)

    CAS  Google Scholar 

  103. S. Coskun, E. Selen Ates, H.E. Unalan, Optimization of silver nanowire networks for polymer light emitting diode electrodes. Nanotechnology 24(12), 125202 (2013)

    Google Scholar 

  104. T. Tokuno et al., Fabrication of silver nanowire transparent electrodes at room temperature. Nano Res. 4(12), 1215–1222 (2011)

    CAS  Google Scholar 

  105. S. Lee et al., Electrodeposited Silver Nanowire Transparent Conducting Electrodes for Thin-Film Solar Cells. ACS Appl. Mater. Interfaces. 12(5), 6169–6175 (2020)

    CAS  Google Scholar 

  106. W. Gaynor et al., Smooth Nanowire/Polymer Composite Transparent Electrodes. Adv. Mater. 23(26), 2905–2910 (2011)

    CAS  Google Scholar 

  107. D. Chen, J. Liang, Q. Pei, Flexible and stretchable electrodes for next generation polymer electronics: a review. Sci. China Chem. 59(6), 659–671 (2016)

    CAS  Google Scholar 

  108. R. Xu, Y. Li, J. Tang, Recent advances in flexible organic light-emitting diodes. J. Mater. Chem. C 4(39), 9116–9142 (2016)

    CAS  Google Scholar 

  109. D. Langley et al., Flexible transparent conductive materials based on silver nanowire networks: a review. Nanotechnology 24(45), 452001 (2013)

    Google Scholar 

  110. M.B. Gebeyehu et al., Synthesis and highly effective purification of silver nanowires to enhance transmittance at low sheet resistance with simple polyol and scalable selective precipitation method. RSC Adv. 7(26), 16139–16148 (2017)

    CAS  Google Scholar 

  111. C. Mayousse et al., Improvements in purification of silver nanowires by decantation and fabrication of flexible transparent electrodes. Application to capacitive touch sensors. Nanotechnology 24(21), 215501 (2013)

    Google Scholar 

  112. M. Hanauer et al., Separation of nanoparticles by gel electrophoresis according to size and shape. Nano Lett. 7(9), 2881–2885 (2007)

    CAS  Google Scholar 

  113. T.D. Lazzara et al., Polymer templated synthesis of AgCN and Ag nanowires. Chem. Mater. 21(10), 2020–2026 (2009)

    CAS  Google Scholar 

  114. R. Jarrett, R. Crook, Silver nanowire purification and separation by size and shape using multi-pass filtration. Mater. Res. Innov. 20(2), 86–91 (2016)

    CAS  Google Scholar 

  115. K.C. Pradel, K. Sohn, J. Huang, Cross-flow purification of nanowires. Angew. Chem. Int. Ed. 50(15), 3412–3416 (2011)

    CAS  Google Scholar 

  116. H. Wang et al., Dynamic agitation-induced centrifugal purification of nanowires enabling transparent electrodes with 99.2% transmittance. Adv. Funct. Mater. 28(45), 1804479 (2018)

    Google Scholar 

  117. H. Kang et al., Junction welding techniques for metal nanowire network electrodes. Macromol. Res. 26(12), 1066–1073 (2018)

    CAS  Google Scholar 

  118. T. Song et al., Nanoscale Joule Heating and Electromigration Enhanced Ripening of Silver Nanowire Contacts. ACS Nano 8(3), 2804–2811 (2014)

    CAS  Google Scholar 

  119. Y. Huang et al., Self-limited nanosoldering of silver nanowires for high-performance flexible transparent heaters. ACS Appl. Mater. Interfaces 11(24), 21850–21858 (2019)

    CAS  Google Scholar 

  120. X. Liang et al., Room-temperature nanowelding of a silver nanowire network triggered by hydrogen chloride vapor for flexible transparent conductive films. ACS Appl. Mater. Interfaces. 9(46), 40857–40867 (2017)

    CAS  Google Scholar 

  121. J. Xue et al., Nanowire-based transparent conductors for flexible electronics and optoelectronics. Sci. Bull. 62(2), 143–156 (2017)

    CAS  Google Scholar 

  122. J. Jung et al., Stretchable/flexible silver nanowire electrodes for energy device applications. Nanoscale 11(43), 20356–20378 (2019)

    CAS  Google Scholar 

  123. Y. Sun et al., Flexible organic photovoltaics based on water-processed silver nanowire electrodes. Nature Electron. 2(11), 513–520 (2019)

    CAS  Google Scholar 

  124. X. Yan et al., Electrically sintered silver nanowire networks for use as transparent electrodes and heaters. Mater. Res. Express 6(11), 116316 (2019)

    Google Scholar 

  125. D. Kim, Y. Kim, J. Kim, Transparent and flexible film for shielding electromagnetic interference. Mater. Des. 89, 703–707 (2016)

    CAS  Google Scholar 

  126. M. Arjmand et al., Outstanding electromagnetic interference shielding of silver nanowires: comparison with carbon nanotubes. RSC Adv. 5(70), 56590–56598 (2015)

    CAS  Google Scholar 

  127. J. Jin et al., High-performance hybrid plastic films: a robust electrode platform for thin-film optoelectronics. Energy Environ. Sci. 6(6), 1811–1817 (2013)

    CAS  Google Scholar 

  128. Y. Su et al., Assembling polymeric silver nanowires for transparent conductive cellulose nanopaper. J. Mater. Chem. C 7(45), 14123–14129 (2019)

    CAS  Google Scholar 

  129. L. Sen et al., Room-temperature production of silver-nanofiber film for large-area, transparent and flexible surface electromagnetic interference shielding. Npj Flex. Electron. 3(1), 1–8 (2019)

    Google Scholar 

  130. E.A. Mayerberger et al., Preparation and characterization of polymer-Ti3 C2 Tx (MXene) composite nanofibers produced via electrospinning. J. Appl. Polym. Sci. 134(37), 45295 (2017)

    Google Scholar 

  131. H. Kim, B. Kim, I. Kim, Fabrication and EMI shielding effectiveness of Ag-decorated highly porous poly(vinyl alcohol)/Fe2O3 nanofibrous composites. Mater. Chem. Phys. 135(2–3), 1024–1029 (2012)

    CAS  Google Scholar 

  132. A.S. Levitt et al., Electrospun MXene/carbon nanofibers as supercapacitor electrodes. J. Mater. Chem. A 7(1), 269–277 (2019)

    CAS  Google Scholar 

  133. J. Pu et al., Human skin-inspired electronic sensor skin with electromagnetic interference shielding for the sensation and protection of wearable electronics. ACS Appl. Mater. Interfaces. 10(47), 40880–40889 (2018)

    CAS  Google Scholar 

  134. Y. Wan et al., Anticorrosive, ultralight, and flexible carbon-wrapped metallic nanowire hybrid sponges for highly efficient electromagnetic interference shielding. Small 14(27), 1800534 (2018)

    Google Scholar 

  135. C. Weng et al., Buckled AgNW/MXene hybrid hierarchical sponges for high-performance electromagnetic interference shielding. Nanoscale 11(47), 22804–22812 (2019)

    CAS  Google Scholar 

  136. L. Liu et al., Flexible and multifunctional silk textiles with biomimetic leaf-like MXene/silver nanowire nanostructures for electromagnetic interference shielding, humidity monitoring, and self-derived hydrophobicity. Adv. Funct. Mater. 29, 190519744 (2019)

    Google Scholar 

  137. N. Zhang et al., Flexible and transparent graphene/silver-nanowires composite film for high electromagnetic interference shielding effectiveness. Sci. Bull. 64(8), 540–546 (2019)

    CAS  Google Scholar 

  138. H.J. Sim et al., Self-healing graphene oxide-based composite for electromagnetic interference shielding. Carbon 155, 499–505 (2019)

    CAS  Google Scholar 

  139. J.H. Choi, K.Y. Lee, S.W. Kim, Ultra-bendable and durable Graphene-Urethane composite/silver nanowire film for flexible transparent electrodes and electromagnetic-interference shielding. Composite B 177, 107406 (2019)

    CAS  Google Scholar 

  140. H. Cheong et al., Silver nanowire network transparent electrodes with highly enhanced flexibility by welding for application in flexible organic light-emitting diodes. ACS Appl. Mater. Interfaces. 6(10), 7846–7855 (2014)

    CAS  Google Scholar 

  141. M.A.M. Sarjidan, W.H. AbdMajid, Prospect of silver nanowire (AgNW) in development of simple and cost-effective vertical organic light-emitting transistors. Appl. Phys. A 125, 87112 (2019)

    Google Scholar 

  142. M.A.M. Sarjidan, A. Shuhaimi, W.H. Abd Majid, Solution-processable vertical organic light-emitting transistors (VOLETs) with directly deposited silver nanowires intermediate source electrode. J. Nanosci. Nanotechnol. 19(11), 6995–7003 (2019)

    CAS  Google Scholar 

  143. H. Lee et al., Highly efficient and low voltage silver nanowire-based OLEDs employing a n-type hole injection layer. Nanoscale 6(15), 8565–8570 (2014)

    CAS  Google Scholar 

  144. J. Li et al., A flexible plasma-treated silver-nanowire electrode for organic light-emitting devices. Sci. Rep. 7(1), 1–9 (2017)

    Google Scholar 

  145. S.H. Cho, S.B. Heo, S.J. Kang, Improve the surface of silver nanowire transparent electrode using a double-layer structure for the quantum-dot light-emitting diodes. Jpn. J. Appl. Phys. 57(3), 32101 (2018)

    Google Scholar 

  146. S. Kim, B. Hwang, Ag nanowire electrode with patterned dry film photoresist insulator for flexible organic light-emitting diode with various designs. Mater. Des. 160, 572–577 (2018)

    CAS  Google Scholar 

  147. D.J. Lee et al., Light sintering of ultra-smooth and robust silver nanowire networks embedded in poly(vinyl-butyral) for flexible OLED. Sci. Rep. 8(1), 1–9 (2018)

    Google Scholar 

  148. H. Choi et al., Efficiency enhancement of organic light-emitting diodes using mesoporous titanium-oxide scattering nanoparticles. Mater. Lett. 214, 1–5 (2018)

    CAS  Google Scholar 

  149. K.M. Lee et al., Enhanced outcoupling in flexible organic light-emitting diodes on scattering polyimide substrates. Org. Electron. 51, 471–476 (2017)

    CAS  Google Scholar 

  150. S. Hong et al., Selective laser direct patterning of silver nanowire percolation network transparent conductor for capacitive touch panel. J. Nanosci. Nanotechnol. 15(3), 2317–2323 (2015)

    CAS  Google Scholar 

  151. H. Yang et al., Facile fabrication of large-scale silver nanowire-PEDOT:PSS composite flexible transparent electrodes for flexible touch panels. Mater. Res. Express 6, 0863158 (2019)

    Google Scholar 

  152. J. Lee et al., Very long Ag nanowire synthesis and its application in a highly transparent, conductive and flexible metal electrode touch panel. Nanoscale 4(20), 6408 (2012)

    CAS  Google Scholar 

  153. K.K. Kim et al., Transparent wearable three-dimensional touch by self-generated multiscale structure. Nat. Commun. 10(1), 1–8 (2019)

    Google Scholar 

  154. H. Yu et al., Use of solution-processed zinc oxide to prevent the breakdown in silver nanowire networks. Nanotechnology 31(18), 18LT01 (2020)

    Google Scholar 

  155. S. Sadeque et al., Transient Self-Heating at Nanowire Junctions in Silver Nanowire Network Conductors. IEEE Trans. Nanotechnol. 17(6), 1171–1180 (2018)

    CAS  Google Scholar 

  156. F. Oytun, O. Alpturk, F. Basarir, Coupling layer-by-layer assembly and multilayer transfer to fabricate flexible transparent film heater. Mater. Res. Bull. 112, 53–60 (2019)

    CAS  Google Scholar 

  157. H. Guo et al., Self-powered digital-analog hybrid electronic skin for noncontact displacement sensing. NANO Energy 58, 121–129 (2019)

    CAS  Google Scholar 

  158. C. Yang et al., Force sensor fabrication by AgNWs film using 532 nm pulses laser. Appl. Surf. Sci. 484, 1019–1026 (2019)

    CAS  Google Scholar 

  159. F. Sayar Irani, B. Tunaboylu, SAW humidity sensor sensitivity enhancement via electrospraying of silver nanowires. Sensors 16(12), 2024 (2016)

    Google Scholar 

  160. Y. Wei et al., Silver nanowires coated on cotton for flexible pressure sensors. J. Mater. Chem. C 4(5), 935–943 (2016)

    CAS  Google Scholar 

  161. E.H. Koh et al., M13 Bacteriophage/silver nanowire surface-enhanced raman scattering sensor for sensitive and selective pesticide detection. ACS Appl. Mater. Interfaces 10(12), 10388–10397 (2018)

    CAS  Google Scholar 

  162. X. Shi et al., Bioinspired ultrasensitive and stretchable MXene-based strain sensor via nacre-mimetic microscale “Brick-and-Mortar” architecture. ACS Nano 13(1), 649–659 (2018)

    Google Scholar 

  163. X. Shi et al., Lowering internal friction of 0D–1D-2D ternary nanocomposite-based strain sensor by fullerene to boost the sensing performance. Adv. Func. Mater. 28(22), 1800850 (2018)

    Google Scholar 

  164. S. Zhang et al., Ultrasensitive and highly compressible piezoresistive sensor based on polyurethane sponge coated with a cracked cellulose nanofibril/silver nanowire layer. ACS Appl. Mater. Interfaces 11(11), 10922–10932 (2019)

    CAS  Google Scholar 

  165. M. Cao et al., Wearable rGO-Ag NW@cotton fiber piezoresistive sensor based on the fast charge transport channel provided by Ag nanowire. Nano Energy 50, 528–535 (2018)

    CAS  Google Scholar 

  166. Q. Li et al., Paper-like foldable nanowave circuit with ultralarge curvature and ultrahigh stability. ACS Appl. Mater. Interfaces. 11(46), 43368–43375 (2019)

    CAS  Google Scholar 

  167. S. Fan et al., Size-dependent Young’s modulus in ZnO nanowires with strong surface atomic bonds. Nanotechnology 29(12), 125702 (2018)

    Google Scholar 

  168. C. Jiang, C. Tang, J. Song, The smallest resonator arrays in atmosphere by chip-size-grown nanowires with TunableQ -factor and Frequency for Subnanometer Thickness Detection. Nano Lett. 15(2), 1128–1134 (2015)

    CAS  Google Scholar 

  169. C. Jiang, W. Lu, J. Song, Shear Modulus Property Characterization of Nanorods. Nano Lett. 13(1), 111–115 (2012)

    Google Scholar 

  170. C. Tang et al., Nonlinear length dependent electrical resistance of a single crystal zinc oxide micro/nanobelt. Phys. Chem. Chem. Phys. 15(21), 8222 (2013)

    CAS  Google Scholar 

  171. M. Mazur, Electrochemically prepared silver nanoflakes and nanowires. Electrochem. Commun. 6(4), 400–403 (2004)

    CAS  Google Scholar 

  172. D.B. Zhang et al., Formation of silver nanowires in aqueous solutions of a double-hydrophilic block copolymer. Chem. Mater. 13(9), 2753–+ (2001)

    Google Scholar 

  173. X. Xu et al., Resistance change of stretchable composites based on inkjet-printed silver nanowires. J. Phys. D 53(5), 5 (2020)

    Google Scholar 

  174. X. Xu et al., Screen printed silver nanowire and graphene oxide hybrid transparent electrodes for long-term electrocardiography monitoring. J. Phys. D 52(45), 455401 (2019)

    CAS  Google Scholar 

  175. Huang, Q. and Y. Zhu, Gravure Printing of Water-based Silver Nanowire ink on Plastic Substrate for Flexible Electronics. Scientific Reports, 2018. 8(1).

  176. C. Chen et al., Visibly transparent polymer solar cells produced by solution processing. ACS Nano 6(8), 7185–7190 (2012)

    CAS  Google Scholar 

  177. K.K. Kim et al., Highly sensitive and stretchable multidimensional strain sensor with prestrained anisotropic metal nanowire percolation networks. Nano Lett. 15(8), 5240–5247 (2015)

    CAS  Google Scholar 

Download references

Funding

Funding was supported by National Natural Science Foundation of China Grant Nos. 51702035 and 51975101.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chengming Jiang, Qikun Li or Jinhui Song.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, D., Jiang, C., Li, Q. et al. Silver nanowire networks with preparations and applications: a review. J Mater Sci: Mater Electron 31, 15669–15696 (2020). https://doi.org/10.1007/s10854-020-04131-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04131-x

Navigation