Skip to main content
Log in

The role of a nonconductive film (NCF) on Cu/Ni/Sn-Ag microbump interconnect reliability

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The use of a nonconductive film (NCF) to establish and enhance the stability of microbumps is crucial. Even though it is normal to apply NCF to microbump interconnection layers, understanding the behavior of microbump stability without the protection from a NCF is important. A free standing structure without a NCF can be used to determine the mechanical response of a single microbump. This information can be used to design robust interconnect structures. Electromigration (EM) tests were performed at 150 ℃ and 1.3 × 105 A/cm2 to investigate the effect of a NCF on the electrical reliability of Cu/Ni/Sn-Ag microbumps. The EM test results show different failure times and failure modes for Cu/Ni/Sn-Ag microbumps with the NCF and without the NCF. The microbump test samples with the NCF had a time to failure that was three times longer than that without the NCF. At a constant current density condition, the contribution of temperature-induced accelerated degradation and mechanical deformation factors were considered. A series of finite element and electron backscattered diffraction analyses revealed that the NCF restricted solder deformation and led to an increase in the back stress, which prolonged the EM lifetime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J.R. Lloyd, J. Phys. D: Appl. Phys. 32, 109 (1999)

    Article  Google Scholar 

  2. K.N. Tu, K. Zeng, Mater. Sci. Eng. 34, 1 (2001)

    Article  Google Scholar 

  3. T.S. Oh, K.Y. Lee, Y.H. Lee, B.Y. Jung, Met. Mater. Int. 15, 479 (2009)

    Article  CAS  Google Scholar 

  4. J. Cho, E. Yoon, Y. Park, W.J. Ha, J.K. Kim, Electron. Mater. Lett. 6, 51 (2010)

    Article  CAS  Google Scholar 

  5. R.R. Tummala, Fundamentals of microsystems packaging (McGraw-Hill, New York, 2001)

    Google Scholar 

  6. J.H. Lee, G.T. Lim, S.T. Yang, M.S. Suh, Q.H. Chung, K.Y. Byun, Y.B. Park, J. Kor. Inst. Met. & Mater. 46, 310 (2008)

    CAS  Google Scholar 

  7. G.T. Park, B.R. Lee, K. Son, Y.B. Park, Electron. Mater. Lett. 15, 149 (2019)

    Article  CAS  Google Scholar 

  8. W.J. Choi, E.C.C. Yeh, K.N. Tu, J. Appl. Phys. 94, 5665 (2003)

    Article  CAS  Google Scholar 

  9. K.M. Chen, J.D. Wu, K.N. Chiang, Microelectron. Reliab. 46, 2104 (2006)

    Article  CAS  Google Scholar 

  10. K.N. Chiang, C.C. Lee, C.C. Lee, K.M. Chen, Appl. Phys. Lett. 88, 072102 (2006)

    Article  Google Scholar 

  11. H.Y. Basaran, D.C. Hopkins, Int. J. Damage Mech. 15, 41 (2006)

    Article  Google Scholar 

  12. J. H. Lee, Y. D. Lee, Y. B. Park, S. T. Yang, M. S. Suh, Q. H. Chung, and K. Y. Byun, Proceedings of 57th Electronic Components and Technology Conference (2007)

  13. K. Yamanaka, Y. Tsukada, K. Suganuma, Microelectron. Reliab. 47, 1280 (2007)

    Article  CAS  Google Scholar 

  14. K. Yamanaka, Y. Tsukada, K. Suganuma, J. Alloys Compd. 437, 186 (2007)

    Article  CAS  Google Scholar 

  15. Y.S. Lai, K.M. Chen, C.L. Kao, C.W. Lee, Y.T. Chiu, Microelectron. Reliab. 47, 1273 (2007)

    Article  CAS  Google Scholar 

  16. D. Yang, Y.C. Chan, K.N. Tu, Appl. Phys. Lett. 93, 041907 (2008)

    Article  Google Scholar 

  17. M.K. Schwiebert, W.H. Leong, IEEE, T. Electron. Pa. M. 19, 133 (1996)

    Google Scholar 

  18. H. Peng, R.W. Johnson, IEEE, T. Electron. Pa. M. 4, 293 (2001)

    Google Scholar 

  19. S.T. Lu, Y.M. Lin, C.C. Chuang, T.H. Chen, W.H. Chen, IEEE Trans. Compon. Packag. Manuf. Technol. 1, 33 (2011)

    Article  CAS  Google Scholar 

  20. C. Feger, N. Labianca, M. Gaynes, S. Steen, Z. Liu, and R. Peddi, Proceedings of 59th Electronic Components and Technology Conference (2009)

  21. K. Honda, T. Enomoto, A. Nagai, and N. Takano, Proceedings of 60th Electronic Components and Technology Conference (ECTC) (2010)

  22. T. F. Yang, K. S. Kao, R. S. Cheng, J. Y. Chang, and C. J. Zhan, Proceedings of 2011 IEEE International Conference on Electronics Packaging (ICEP) (2011)

  23. S. Kawamoto, M. Yoshida, S. Teraki, and H. Iida, Proceedings of 62nd Electronic Components and Technology Conference (2012)

  24. K. Yamanaka, T. Ooyoshi, T. Nejime, J. Alloy. Compd. 481, 659 (2009)

    Article  CAS  Google Scholar 

  25. S. R. Rao, Proceedings of 63rd Electronic Components and Technology Conference (2013)

  26. S.C. Kim, Y.H. Kim, J Mater Sci: Mater Electron. 27, 3658 (2015)

    Google Scholar 

  27. B.I. Noh, J.W. Yoon, S.B. Jung, I.E.E.E.T. Comp, Pack. Man. 32, 633 (2009)

    CAS  Google Scholar 

  28. J. Glazer, P.A. Kramer, J.W. Morris, Circuit World 18, 41 (1992)

    Article  Google Scholar 

  29. I.A. Blech, J. Appl. Phys. 47, 1203 (1976)

    Article  CAS  Google Scholar 

  30. I.A. Blech, Acta Mater. 46, 3717 (1998)

    Article  CAS  Google Scholar 

  31. W.C. Kuan, S.W. Liang, C. Chen, Microelectron. Reliab. 49, 544 (2009)

    Article  CAS  Google Scholar 

  32. L. Meinshausen, K. Weide-Zaage, and M. Petzold, Proceedings of 61st Electronic Components and Technology Conference (2011)

  33. F. M. Tzu, L. S. Chao, and J. H. Chou, Proceedings of International Microsystems, Packaging, Assembly and Circuits Technology (2007)

  34. C. Liu, S. M. Chen, F. W. Kuo, H. N. Chen, E. H. Yeh, Proceedings of International Electron Devices Meeting (2012)

  35. A. Yeo, C. Lee, J.H.L. Pang, I.E.E.E.T. Comp, Pack. Man. 29, 355 (2006)

    CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2019R1D1A3A03103823), and also by MOTIE(Ministry of Trade, Industry & Energy (20003524) and KSRC(Korea Semiconductor Research Consortium) support program for the development of the future semiconductor device. The authors would like to thank Dr. H.Y. Son and N.S. Kim from SK Hynix Inc. for valuable discussions and test sample preparations.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Young-Bae Park or Tae-Kyu Lee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ryu, H., Son, K., Han, J.S. et al. The role of a nonconductive film (NCF) on Cu/Ni/Sn-Ag microbump interconnect reliability. J Mater Sci: Mater Electron 31, 15530–15538 (2020). https://doi.org/10.1007/s10854-020-04115-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04115-x

Navigation