Skip to main content
Log in

Detection of thiourea with ternary Ag2O/TiO2/ZrO2 nanoparticles by electrochemical approach

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this approach, the ternary co-doped Ag2O/TiO2/ZrO2 nanoparticles (NPs) were synthesized by hydrothermal method in alkaline medium at low temperature. The powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM) equipped with energy-dispersive X-ray spectroscopy (EDS) were applied for detail characterization such as phase crystallinity, crystal size, binding energy, oxidation state of components, elemental compositions, structural as well as morphological analyses of synthesized NPs. A linear relation of current versus concentration for the purpose of thiourea (TU) detection was established, which is known as calibration curve. From the slope of calibration curve by considering the active surface area of fabricated GCE (0.0316 cm2), the sensitivity of TU sensor was calculated as 56.3892 µA µM−1 cm−2. The linear segment on calibration curve analogues with the regression co-efficient R2 = 0.9996 is denoted as linear dynamic range (LDR; 0.1 nM–0.01 mM) as well as the lower limit of TU (91.70 ± 4.59 pM) detection is calculated in this approach. The sensor parameters such as reproducibility, response time and long-time stability are found as acceptable and good results besides the other sensor performances. The proposed TU sensor is found as reliable in detection of real biological samples. This is a well-known electrochemical method to prepare an efficient chemical sensor probe with doped nanostructure materials for the safety of environmental and healthcare fields at broad scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 2
Fig. 7

Similar content being viewed by others

References

  1. A.N. de Oliveira, H. de Santana, C.T.B.V. Zaia, D.A.M. Zaia, J. Food Compos. Anal. 17, 165–177 (2004)

    Google Scholar 

  2. M.E. Moragues, L.E. Santos-Figueroa, T. Ábalos, F. Sancenón, R. Martínez-Máñez, Tetrahedron Lett. 53, 5110–5113 (2012)

    CAS  Google Scholar 

  3. U. Chalapathi, B. Poornaprakash, S.H. Park, J Mater Sci: Mater Electron. 28, 2954–2961 (2017)

    CAS  Google Scholar 

  4. M. Siddiq, J.N. Cash, N.K. Sinha, P. Akhter, J. Food Biochem. 17, 327–337 (1994)

    CAS  Google Scholar 

  5. S.V. Gholap, V.N. Dod, S.A. Bhuyar, S.G. Bharad, Crop. Res. Hisar. 20, 546–548 (2000)

    Google Scholar 

  6. S.M. Sokkar, A.H. Soror, Y.F. Ahmed, O.H. Ezzo, M.A. Hamouda, J. Vet. Med. Ser. B 47, 641–652 (2000)

    CAS  Google Scholar 

  7. S.V. Bhide, B.T. Deshmuh, B.A. Talvelkar, A.S. Nagvekar, Indian Vet. J. 78, 205–208 (2001)

    Google Scholar 

  8. D.S. Cooper, N. Engl, J. Med. 311, 1353–1362 (1984)

    CAS  Google Scholar 

  9. J. Rethmeier, G. Neumann, C. Stumpf, A. Rabenstein, C. Vogt, J. Chromatogr. A 934, 129–134 (2001)

    CAS  Google Scholar 

  10. H.L. Kies, Anal. Chim. Acta 96, 183–184 (1978)

    CAS  Google Scholar 

  11. K. Kargosha, M. Khanmohammadi, M. Ghadiri, Anal. Chim. Acta 437, 139–143 (2001)

    CAS  Google Scholar 

  12. C. Chen, D. Zhao, J. Sun, X. Yang, Analyst 141, 2581–2587 (2016)

    CAS  Google Scholar 

  13. W. Wang, Z.Z. Dong, C. Yang, G. Li, Y.C. Tse, C.H. Leung, D.L. Ma, Sens. Actuators B 251, 374–379 (2017)

    CAS  Google Scholar 

  14. I. Pedre, F. Battaglini, G.J.L. Delgado, M.G. Sánchez-Loredo, G.A. González, Sens. Actuators B 211, 515–522 (2015)

    CAS  Google Scholar 

  15. I. Pedre, L.M. Leo, M.G. Sánchez-Loredo, F. Battaglini, G.A. González, Biosens. Bioelectron. 99, 586–592 (2018)

    Google Scholar 

  16. M.M. Rahman, J. Ahmed, A.M. Asiri, Biosens. Bioelectron. 99, 586–592 (2018)

    CAS  Google Scholar 

  17. M.M. Alam, M.T. Uddin, A.M. Asiri, M.M. Rahman, M.A. Islam, Arab. J. Chem. 13, 5406–5416 (2020)

    CAS  Google Scholar 

  18. F. Fang, Q. Li, J.K. Shang, Surf. Coat. Technol. 205, 2919–2923 (2011)

    CAS  Google Scholar 

  19. K. Kalpana, V. Selvaraj, Ceram. Int. 41, 9671–9679 (2015)

    CAS  Google Scholar 

  20. A.M. Allahverdiyev, E.S. Abamor, M. Bagirova, M. Rafailovich, Future Microbiol. 6, 8 (2011)

    Google Scholar 

  21. X. Chen, Z. Guo, W.H. Xu, H.B. Yao, M.Q. Li, J.H. Liu, X.J. Huang, S.H. Yu, Adv. Funct. Mater. 21, 2049–2056 (2011)

    CAS  Google Scholar 

  22. M.M. Rahman, M.M. Alam, A.M. Asiri, J. Uddin, New J. Chem. 44, 2001–2010 (2020)

    CAS  Google Scholar 

  23. M.M. Alam, A.M. Asiri, M.T. Uddin, M.A. Islam, M.R. Awual, M.M. Rahman, New J. Chem. 43, 8651–8659 (2019)

    CAS  Google Scholar 

  24. B. Choudhury, A. Choudhury, Physica E 56, 364–371 (2014)

    CAS  Google Scholar 

  25. R.H. Rakib, M.A. Hasnat, M.N. Uddin, M.M. Alam, A.M. Asiri, M.M. Rahman, I.A. Siddiquey, Chem. Select 4, 12592–12600 (2019)

    CAS  Google Scholar 

  26. M.R. Karim, M.M. Alam, M.O. Aijaz, A.M. Asiri, F.S. Al-Mubaddel, M.M. Rahman, RSC Adv. 10, 12224–12233 (2020)

    CAS  Google Scholar 

  27. A. Sinhamahapatra, J.P. Jeon, J. Kang, B. Han, J.S. Yu, Sci. Rep. 6, 27218 (2016)

    CAS  Google Scholar 

  28. M.M. Rahman, M.M. Alam, A.M. Asiri, M.A. Islam, Talanta 176, 17–25 (2018)

    CAS  Google Scholar 

  29. M.M. Rahman, M.M. Alam, A.M. Asiri, M.R. Awual, New J. Chem. 41, 9159–9169 (2017)

    CAS  Google Scholar 

  30. B. Abu-Zied, M.M. Alam, A.M. Asiri, J. Ahmed, M.M. Rahman, Microchem. J. 157, 104972 (2020)

    CAS  Google Scholar 

  31. M.M. Rahman, M.R. Karim, M.M. Alam, M.B. Zaman, N. Alharthi, H. Alharbi, A.M. Asiri, Sci. Rep. 10, 557 (2020)

    CAS  Google Scholar 

  32. M.M. Rahman, Microchem. J. 157, 104945 (2020)

    CAS  Google Scholar 

  33. M.M. Rahman, A. Wahid, A.M. Asiri, M.R. Awual, M.R. Karim, New J. Chem. 44, 4952–4959 (2020)

    CAS  Google Scholar 

  34. S. Li, K. Xu, S. Hu, W. Jiang, J. Zhang, J. Liu, L. Zhang, Appl. Surf. Sci. 397, 95–103 (2017)

    CAS  Google Scholar 

  35. M. Wang, J. Zhu, Y. Xue, Z. Cui, M. Zhao, J. Mater. Sci. 52, 1039–1046 (2017)

    CAS  Google Scholar 

  36. H.M. Chenari, C. Seibel, D. Hauschild, F. Reinert, H. Abdollahian, Mater. Res. 19, 1319–1323 (2016)

    CAS  Google Scholar 

  37. S.S. Al-Taweel, H.R. Saud, J. Chem. Pharm. Res. 8, 620–626 (2016)

    CAS  Google Scholar 

  38. A.A. Nabiyev, AKh Islamov, A.M. Maharramov, M.A. Nuriyev, R.S. Ismayilova, A.S. Doroshkevic, A. Pawlukojc, V.A. Turchenko, A. Olejniczak, M.İ. Rulev, V. Almasan, A.I. Kuklin, J. Phys. Conf. Ser. 994, 012011 (2018)

    Google Scholar 

  39. O. Mangla, S. Roy, Proceedings 3, 10 (2019)

    Google Scholar 

  40. S.S. Patil, M.G. Mali, M.S. Tamboli, D.R. Patil, M.V. Kulkarni, H. Yoon, H. Kim, S.S. Al-Deyab, S.S. Yoonc, S.S. Kolekar, B.B. Kale, Catal. Today 260, 126–134 (2016)

    CAS  Google Scholar 

  41. H. Dong, Z. Li, X. Xu, Z. Ding, L. Wu, X. Wang, X. Fu, Appl. Catal. B 89, 551–556 (2009)

    CAS  Google Scholar 

  42. B. Bharti, S. Kumar, H.N. Lee, R. Kumar, Sci. Rep. 6, 32355 (2016)

    CAS  Google Scholar 

  43. A. Juma, I.O. Acik, A.T. Oluwabi, A. Mere, V. Mikli, M. Danilson, M. Krunks, Appl. Surf. Sci. 387, 539–545 (2016)

    CAS  Google Scholar 

  44. K.C. Hsu, D.H. Chen, Nanoscale Res. Lett. 9, 1–9 (2014)

    Google Scholar 

  45. J. Wei, Y. Lei, H. Jia, J. Cheng, H. Hou, Z. Zheng, Dalton Trans. 43, 11333–11338 (2014)

    CAS  Google Scholar 

  46. N. Mahanta, J.P. Chen, J. Mater. Chem. A 1, 8636–8644 (2013)

    CAS  Google Scholar 

  47. I. Bespalov, M. Datler, S. Buhr, W. Drachsel, G. Rupprechter, Y. Suchorski, Ultramicroscopy 159, 147–151 (2015)

    CAS  Google Scholar 

  48. M.M. Rahman, Mater. Chem. Phys. 45, 122788 (2020)

    Google Scholar 

  49. J. Ahmed, M.M. Rahman, I.A. Siddiquey, A.M. Asiri, M.A. Hasnat, Sens. Actuators B 256, 383–392 (2018)

    CAS  Google Scholar 

  50. M.M. Alam, A.M. Asiri, M.M. Rahman, Mater. Chem. Phys. 243, 122658 (2020)

    CAS  Google Scholar 

  51. M.M. Alam, A.M. Asiri, M.M. Rahman, M.A. Islam, Mater. Chem. Phys. 244, 122740 (2020)

    CAS  Google Scholar 

  52. M.M. Alam, A.M. Asiri, M.T. Uddin, M.A. Islam, M.M. Rahman, RSC Adv. 8, 12562–12572 (2018)

    CAS  Google Scholar 

  53. M.M. Rahman, M.M. Alam, A.M. Asiri, New J. Chem. 42, 10263–10270 (2018)

    CAS  Google Scholar 

  54. J. Kirchnerova, W.C. Purdy, Anal. Chim. Acta 123, 83–95 (1981)

    CAS  Google Scholar 

  55. M. Yan, K. Liu, Z., J. Electroanal. Chem. 408, 225–229 (1996)

    Google Scholar 

  56. M.M. Rahman, H.B. Balkhoyor, A.M. Asiri, New J. Chem. 43, 18848–18859 (2019)

    CAS  Google Scholar 

  57. M.M. Rahman, J. Ahmed, A.M. Asiri, New J. Chem. 19298, 19307 (2019)

    Google Scholar 

  58. M.M. Rahman, Sci. Rep. 9, 19234 (2019)

    CAS  Google Scholar 

  59. M.M. Rahman, M.M. Alam, A.M. Asiri, RSC Adv. 9, 35146–35157 (2019)

    CAS  Google Scholar 

  60. M.M. Rahman, T.A. Sheikh, A.M. Asiri, M.R. Awual, New J. Chem. 43, 4620–4632 (2019)

    CAS  Google Scholar 

  61. M.M. Alam, A.M. Asiri, M.T. Uddin, M.A. Inamuddin, M.R. Islam, M.M.R. Awual, New J. Chem. 43, 4849–4858 (2019)

    CAS  Google Scholar 

  62. M.M. Rahman, M.M. Alam, A.M. Asiri, Nanoscale Adv. 1, 696–705 (2019)

    CAS  Google Scholar 

  63. M.M. Alam, A.M. Asiri, M.T. Uddin, M.A. Islam, M.M. Rahman, Chem. Select 3, 11460–11468 (2018)

    CAS  Google Scholar 

  64. T.A. Sheikh, M.M. Rahman, A.M. Asiri, H.M. Marwani, M.R. Awual, J. Ind. Eng. Chem. 66, 446–455 (2018)

    CAS  Google Scholar 

  65. M. Tertiş, A. Florea, A. Adumitrăchioaie, A. Cernat, D. Bogdan, L. Barbu-Tudoran, N.J. Renault, R. Săndulescu, C. Cristea, ChemPlusChem 82, 561–569 (2017)

    Google Scholar 

  66. M.M. Rahman, A. Wahid, M.M. Alam, A.M. Asiri, Mater. Today Commun. 16, 307–313 (2018)

    CAS  Google Scholar 

  67. T. Alizadeh, S. Azizi, Biosens. Bioelectron. 81, 198–206 (2016)

    CAS  Google Scholar 

  68. M.M. Rahman, Sens. Actuators B 305, 127541 (2020)

    Google Scholar 

  69. K. Huo, Y. Li, R. Chen, B. Gao, C. Peng, W. Zhang, L. Hu, X. Zhang, P.K. Chu, ChemPlusChem 80, 576–582 (2015)

    CAS  Google Scholar 

Download references

Acknowledgements

Center of Excellence for Advanced Materials Research (CEAMR), Chemistry Department, King Abdulaziz University, Jeddah, Saudi Arabia is highly acknowledged for instrumental supports and research facilities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohammed M. Rahman or M. M. Alam.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahman, M.M., Alam, M.M. & Asiri, A.M. Detection of thiourea with ternary Ag2O/TiO2/ZrO2 nanoparticles by electrochemical approach. J Mater Sci: Mater Electron 31, 15422–15433 (2020). https://doi.org/10.1007/s10854-020-04105-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04105-z

Navigation