Skip to main content
Log in

Controllable synthesis of Sn:ZnO/SnO2 nanorods: pH-dependent growth for an ethanol gas sensor

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Tin-doped zinc oxide/tin oxide nanorod (Sn:ZnO/SnO2 NR) films were successfully synthesized using a solution immersion method by manipulating the pH concentration of the solutions to fabricate an ethanol gas sensor. Sn:ZnO/SnO2 NR films were prepared at constant Sn:ZnO solution pH (5.5), while the pH of the SnO2 solutions was varied between 4.5 and 6.5. In this study, the structural, morphological, and optical properties of Sn:ZnO/SnO2 NR films were investigated. The diameter and thickness of Sn:ZnO/SnO2 NR films were found to increase with the SnO2 pH. Interestingly, the Sn:ZnO/SnO2 NR sample that was prepared at SnO2 solution pH 5.5 showed the highest relative peak intensity along the c-axis plane orientation, which enhanced the sensor performance due to the shorter carrier pathway. In addition, this sample indicated a higher level of surface donor-related defects, which are favorable for sensing device performance. The samples were exposed to ethanol gas to measure their gas-sensing properties. Sn:ZnO/SnO2 NR films prepared at SnO2 solution pH 5.5 showed the highest sensing performance with short response/recovery times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. L. Zhang, J. Zhao, H. Lu, L. Li, J. Zheng, J. Zhang, H. Li, Z. Zhu, Highly sensitive and selective dimethylamine sensors based on hierarchical ZnO architectures composed of nanorods and nanosheet-assembled microspheres. Sens. Actuators B: Chem. 171–172, 1101–1109 (2012)

    Google Scholar 

  2. C. Oros, M. Horprathum, A. Wisitsoraat, T. Srichaiyaperk, B. Samransuksamer, S. Limwichean, P. Eiamchai, D. Phokharatkul, N. Nuntawong, C. Chananonnawathorn, V. Patthanasettakul, A. Klamchuen, J. Kaewkhao, A. Tuantranont, P. Chindaudom, Ultra-sensitive NO2 sensor based on vertically aligned SnO2 nanorods deposited by DC reactive magnetron sputtering with glancing angle deposition technique. Sens. Actuators B: Chem. 223, 936–945 (2016)

    CAS  Google Scholar 

  3. P. Cao, Z. Yang, S.T. Navale, S. Han, X. Liu, W. Liu, Y. Lu, F.J. Stadler, D. Zhu, Ethanol sensing behavior of Pd-nanoparticles decorated ZnO-nanorod based chemiresistive gas sensors. Sens. Actuators B: Chem. 298, 126850 (2019)

    CAS  Google Scholar 

  4. X. Jia, H. Fan, Preparation and ethanol sensing properties of the superstructure SnO2/ZnO composite via alcohol-assisted hydrothermal route. Mater. Res. Bull. 45, 1496–1500 (2010)

    CAS  Google Scholar 

  5. Y. Liu, J. Huang, J. Yang, S. Wang, Pt nanoparticles functionalized 3D SnO2 nanoflowers for gas sensor application. Solid-State Electron. 130, 20–27 (2017)

    CAS  Google Scholar 

  6. Q. Ge, S.Y. Ma, Y.B. Xu, X.L. Xu, H. Chen, Z. Qiang, H.M. Yang, L. Ma, Q.Z. Zeng, Preparation, characterization and gas sensing properties of Pr-doped ZnO/SnO2 nanoflowers. Mater. Lett. 191, 5–9 (2017)

    CAS  Google Scholar 

  7. S. Liu, B. Yu, F. Li, Y. Ji, T. Zhang, Coaxial electrospinning route to prepare Au-loading SnO2 hollow microtubes for non-enzymatic detection of H2O2. Electrochim. Acta 141, 161–166 (2014)

    CAS  Google Scholar 

  8. R. Mohamed, M.H. Mamat, A.S. Ismail, M.F. Malek, A.S. Zoolfakar, Z. Khusaimi, A.B. Suriani, A. Mohamed, M.K. Ahmad, M. Rusop, Hierarchically assembled tin-doped zinc oxide nanorods using low-temperature immersion route for low temperature ethanol sensing. J. Mater. Sci.: Mater. Electron. 28, 16292–16305 (2017)

    CAS  Google Scholar 

  9. Z. Zhang, M. Xu, L. Liu, X. Ruan, J. Yan, W. Zhao, J. Yun, Y. Wang, S. Qin, T. Zhang, Novel SnO2@ZnO hierarchical nanostructures for highly sensitive and selective NO2 gas sensing. Sens. Actuators B: Chem. 257, 714–727 (2018)

    CAS  Google Scholar 

  10. J. Deng, B. Yu, Z. Lou, L. Wang, R. Wang, T. Zhang, Facile synthesis and enhanced ethanol sensing properties of the brush-like ZnO–TiO2 heterojunctions nanofibers. Sens. Actuators B: Chem. 184, 21–26 (2013)

    CAS  Google Scholar 

  11. B. Zhang, W. Fu, H. Li, X. Fu, Y. Wang, H. Bala, G. Sun, X. Wang, Y. Wang, J. Cao, Z. Zhang, Actinomorphic ZnO/SnO2 core–shell nanorods: two-step synthesis and enhanced ethanol sensing propertied. Mater. Lett. 160, 227–230 (2015)

    Google Scholar 

  12. N.D. Khoang, D.D. Trung, N. Van Duy, N.D. Hoa, N. Van Hieu, Design of SnO2/ZnO hierarchical nanostructures for enhanced ethanol gas-sensing performance. Sens. Actuators B: Chem. 174, 594–601 (2012)

    CAS  Google Scholar 

  13. S.H. Yan, S.Y. Ma, W.Q. Li, X.L. Xu, L. Cheng, H.S. Song, X.Y. Liang, Synthesis of SnO2–ZnO heterostructured nanofibers for enhanced ethanol gas-sensing performance. Sens. Actuators B: Chem. 221, 88–95 (2015)

    CAS  Google Scholar 

  14. W. Li, S. Ma, Y. Li, G. Yang, Y. Mao, J. Luo, D. Gengzang, X. Xu, S. Yan, Enhanced ethanol sensing performance of hollow ZnO–SnO2 core–shell nanofibers. Sens. Actuators B: Chem. 211, 392–402 (2015)

    CAS  Google Scholar 

  15. Y. Ling-min, L. Sheng, Y. Bing, H. Miao-miao, K. Meng-di, F. Xinhui, A highly sensitive ethanol gas sensor based on mesoporous SnO2 fabricated from a facile double-surfactant template method. Mater. Lett. 158, 409–412 (2015)

    Google Scholar 

  16. S. Hussain, T. Liu, B. Miao, M. Kashif, N. Aslam, M. Rashad, W. Zeng, X. Peng, Embedded ZnO nanorods and gas-sensing properties. Ceram. Int. 41, 4861–4866 (2015)

    CAS  Google Scholar 

  17. C.M. Shin, J.H. Heo, J.H. Park, T.M. Lee, H. Ryu, B.C. Shin, W.J. Lee, H.K. Kim, The effect of pH on ZnO hydrothermal growth on PES flexible substrates. Physica E 43, 54–57 (2010)

    CAS  Google Scholar 

  18. J. Wang, L. Gao, Synthesis of uniform rod-like, multi-pod-like ZnO whiskers and their photoluminescence properties. J. Cryst. Growth 262, 290–294 (2004)

    CAS  Google Scholar 

  19. Y. Liu, W. Gao, Growth process, crystal size and alignment of ZnO nanorods synthesized under neutral and acid conditions. J. Alloys Compd. 629, 84–91 (2015)

    CAS  Google Scholar 

  20. M.F. Malek, M.H. Mamat, Z. Khusaimi, M.Z. Sahdan, M.Z. Musa, A.R. Zainun, A.B. Suriani, N.D. Md Sin, S.B. Abd Hamid, M. Rusop, Sonicated sol–gel preparation of nanoparticulate ZnO thin films with various deposition speeds: the highly preferred c-axis (002) orientation enhances the final properties. J. Alloys Compd. 582, 12–21 (2014)

    CAS  Google Scholar 

  21. M.J. Alam, D.C. Cameron, Preparation and properties of transparent conductive aluminum-doped zinc oxide thin films by sol–gel process. J. Vac. Sci. Technol. A 19, 1642–1646 (2001)

    CAS  Google Scholar 

  22. D. Lu, Q. Gao, X. Wu, Y. Fan, ZnO nanostructures decorated hollow glass microspheres as near infrared reflective pigment. Ceram. Int. 43, 9164–9170 (2017)

    CAS  Google Scholar 

  23. F. Tsin, A. Venerosy, J. Vidal, S. Collin, J. Clatot, L. Lombez, M. Paire, S. Borensztajn, C. Broussillou, P.P. Grand, S. Jaime, D. Lincot, J. Rousset, Electrodeposition of ZnO window layer for an all-atmospheric fabrication process of chalcogenide solar cell. Sci. Rep. 5, 8961 (2015)

    CAS  Google Scholar 

  24. C.-H. Hsu, D.-H. Chen, Synthesis and conductivity enhancement of Al-doped ZnO nanorod array thin films. Nanotechnology 21, 285603 (2010)

    Google Scholar 

  25. G. Kwak, S. Jung, K. Yong, Multifunctional transparent ZnO nanorod films. Nanotechnology 22, 115705 (2011)

    Google Scholar 

  26. J. Zhang, W. Que, Preparation and characterization of sol–gel Al-doped ZnO thin films and ZnO nanowire arrays grown on Al-doped ZnO seed layer by hydrothermal method. Sol. Energy Mater. Sol. Cells 94, 2181–2186 (2010)

    CAS  Google Scholar 

  27. H.K. Lee, M.S. Kim, J.S. Yu, Effect of AZO seed layer on electrochemical growth and optical properties of ZnO nanorod arrays on ITO glass. Nanotechnology 22, 445602 (2011)

    Google Scholar 

  28. J.H. Lee, C.-Y. Chou, Z. Bi, C.-F. Tsai, H. Wang, Growth-controlled surface roughness in Al-doped ZnO as transparent conducting oxide. Nanotechnology 20, 395704 (2009)

    Google Scholar 

  29. M.F. Malek, M.H. Mamat, M.Z. Musa, T. Soga, S.A. Rahman, S.A.H. Alrokayan, H.A. Khan, M. Rusop, Metamorphosis of strain/stress on optical band gap energy of ZAO thin films via manipulation of thermal annealing process. J. Lumin. 160, 165–175 (2015)

    CAS  Google Scholar 

  30. M.H. Mamat, Z. Khusaimi, M.Z. Musa, M.F. Malek, M. Rusop, Fabrication of ultraviolet photoconductive sensor using a novel aluminium-doped zinc oxide nanorod–nanoflake network thin film prepared via ultrasonic-assisted sol–gel and immersion methods. Sens. Actuators A 171, 241–247 (2011)

    CAS  Google Scholar 

  31. M.H. Mamat, M.Z. Sahdan, Z. Khusaimi, A.Z. Ahmed, S. Abdullah, M. Rusop, Influence of doping concentrations on the aluminum doped zinc oxide thin films properties for ultraviolet photoconductive sensor applications. Opt. Mater. 32, 696–699 (2010)

    CAS  Google Scholar 

  32. R. Ghosh, D. Basak, S. Fujihara, Effect of substrate-induced strain on the structural, electrical, and optical properties of polycrystalline ZnO thin films. J. Appl. Phys. 96, 2689–2692 (2004)

    CAS  Google Scholar 

  33. C.J. Brinker, G.W. Scherer, Sol–Gel Science: The Physics and Chemistry of Sol–Gel Processing (Academic Press, New York, 2013)

    Google Scholar 

  34. J.-H. Yim, Y.-Y. Lyu, H.-D. Jeong, S.A. Song, I.-S. Hwang, J. Hyeon-Lee, S.K. Mah, S. Chang, J.-G. Park, Y.F. Hu, J.N. Sun, D.W. Gidley, The preparation and characterization of small mesopores in siloxane-based materials that use cyclodextrins as templates. Adv. Funct. Mater. 13, 382–386 (2003)

    CAS  Google Scholar 

  35. G. Wypych, Handbook of Fillers (ChemTec, Norwich, 1999)

    Google Scholar 

  36. V. Pandey, N. Mehta, S.K. Tripathi, D.A. Kumar, Optical band gap and optical constants in Se85Te15-xPbx thin films. J. Optoelectron. Adv. Mater. 7, 39 (2005)

    Google Scholar 

  37. S. Mridha, D. Basak, Effect of thickness on the structural, electrical and optical properties of ZnO films. Mater. Res. Bull. 42, 875–882 (2007)

    CAS  Google Scholar 

  38. J.K. Liang, H.L. Su, C.L. Kuo, S.P. Kao, J.W. Cui, Y.C. Wu, J.C.A. Huang, Structural, optical and electrical properties of electrodeposited Sb-doped ZnO nanorod arrays. Electrochim. Acta 125, 124–132 (2014)

    CAS  Google Scholar 

  39. S.K. Mishra, S. Bayan, R. Shankar, P. Chakraborty, R.K. Srivastava, Efficient UV photosensitive and photoluminescence properties of sol–gel derived Sn doped ZnO nanostructures. Sens. Actuators A 211, 8–14 (2014)

    CAS  Google Scholar 

  40. D.-T. Phan, G.-S. Chung, Effects of defects in Ga-doped ZnO nanorods formed by a hydrothermal method on CO sensing properties. Sens. Actuators B: Chem. 187, 191–197 (2013)

    CAS  Google Scholar 

  41. S. Wei, J. Lian, H. Wu, Annealing effect on the photoluminescence properties of ZnO nanorod array prepared by a PLD-assistant wet chemical method. Mater. Charact. 61, 1239–1244 (2010)

    CAS  Google Scholar 

  42. N.S. Norberg, D.R. Gamelin, Influence of surface modification on the luminescence of colloidal ZnO nanocrystals. J. Phys. Chem. B 109, 20810–20816 (2005)

    CAS  Google Scholar 

  43. H. Zhou, H. Alves, D.M. Hofmann, W. Kriegseis, B.K. Meyer, G. Kaczmarczyk, A. Hoffmann, Behind the weak excitonic emission of ZnO quantum dots: ZnO/Zn(OH)2 core-shell structure. Appl. Phys. Lett. 80, 210–212 (2002)

    CAS  Google Scholar 

  44. P. Jiang, J.-J. Zhou, H.-F. Fang, C.-Y. Wang, Z.L. Wang, S.-S. Xie, Hierarchical shelled ZnO structures made of bunched nanowire arrays. Adv. Funct. Mater. 17, 1303–1310 (2007)

    CAS  Google Scholar 

  45. M. JayChithra, M. Sathya, K. Pushpanathan, Effect of pH on crystal size and photoluminescence property of ZnO nanoparticles prepared by chemical precipitation method. Acta Metall. Sin. (Engl. Lett.) 28, 394–404 (2015)

    CAS  Google Scholar 

  46. R. Xie, T. Sekiguchi, T. Ishigaki, N. Ohashi, D. Li, D. Yang, B. Liu, Y. Bando, Enhancement and patterning of ultraviolet emission in ZnO with an electron beam. Appl. Phys. Lett. 88, 134103 (2006)

    Google Scholar 

  47. M.-W. Ahn, K.-S. Park, J.-H. Heo, J.-G. Park, D.-W. Kim, K.J. Choi, J.-H. Lee, S.-H. Hong, Gas sensing properties of defect-controlled ZnO-nanowire gas sensor. Appl. Phys. Lett. 93, 263103 (2008)

    Google Scholar 

  48. S. Luo, J. Fan, W. Liu, M. Zhang, Z. Song, C. Lin, X. Wu, P.K. Chu, Synthesis and low-temperature photoluminescence properties of SnO2 nanowires and nanobelts. Nanotechnology 17, 1695–1699 (2006)

    CAS  Google Scholar 

  49. L.M. Li, Z.F. Du, T.H. Wang, Enhanced sensing properties of defect-controlled ZnO nanotetrapods arising from aluminum doping. Sens. Actuators B: Chem. 147, 165–169 (2010)

    CAS  Google Scholar 

  50. N. Han, L. Chai, Q. Wang, Y. Tian, P. Deng, Y. Chen, Evaluating the doping effect of Fe, Ti and Sn on gas sensing property of ZnO. Sens. Actuators B: Chem. 147, 525–530 (2010)

    CAS  Google Scholar 

  51. C.-L. Hsu, Y.-D. Gao, Y.-S. Chen, T.-J. Hsueh, Vertical Ti doped ZnO nanorods based on ethanol gas sensor prepared on glass by furnace system with hotwire assistance. Sens. Actuators B: Chem. 192, 550–557 (2014)

    CAS  Google Scholar 

  52. M.Z. Ahmad, A.Z. Sadek, K. Latham, J. Kita, R. Moos, W. Wlodarski, Chemically synthesized one-dimensional zinc oxide nanorods for ethanol sensing. Sens. Actuators B: Chem. 187, 295–300 (2013)

    CAS  Google Scholar 

  53. S. Roy, N. Banerjee, C.K. Sarkar, P. Bhattacharyya, Development of an ethanol sensor based on CBD grown ZnO nanorods. Solid-State Electron. 87, 43–50 (2013)

    CAS  Google Scholar 

  54. X. Li, Y. Chang, Y. Long, Influence of Sn doping on ZnO sensing properties for ethanol and acetone. Mater. Sci. Eng. C 32, 817–821 (2012)

    CAS  Google Scholar 

  55. S. Hemmati, A. AnarakiFirooz, A.A. Khodadadi, Y. Mortazavi, Nanostructured SnO2–ZnO sensors: highly sensitive and selective to ethanol. Sens. Actuators B: Chem. 160, 1298–1303 (2011)

    CAS  Google Scholar 

  56. W.-H. Zhang, W.-D. Zhang, Fabrication of SnO2–ZnO nanocomposite sensor for selective sensing of trimethylamine and the freshness of fishes. Sens. Actuators B: Chem. 134, 403–408 (2008)

    CAS  Google Scholar 

  57. J.Y. Park, K. Asokan, S.-W. Choi, S.S. Kim, Growth kinetics of nanograins in SnO2 fibers and size dependent sensing properties. Sens. Actuators B: Chem. 152, 254–260 (2011)

    CAS  Google Scholar 

  58. S.H. Yan, S.Y. Ma, X.L. Xu, W.Q. Li, J. Luo, W.X. Jin, T.T. Wang, X.H. Jiang, Y. Lu, H.S. Song, Preparation of SnO2–ZnO hetero-nanofibers and their application in acetone sensing performance. Mater. Lett. 159, 447–450 (2015)

    CAS  Google Scholar 

  59. W. Tang, J. Wang, P. Yao, X. Li, Hollow hierarchical SnO2-ZnO composite nanofibers with heterostructure based on electrospinning method for detecting methanol. Sens. Actuators B: Chem. 192, 543–549 (2014)

    CAS  Google Scholar 

  60. Z. Zhang, C. Shao, X. Li, L. Zhang, H. Xue, C. Wang, Y. Liu, Electrospun nanofibers of ZnO−SnO2 heterojunction with high photocatalytic activity. J. Phys. Chem. C 114, 7920–7925 (2010)

    CAS  Google Scholar 

  61. J.Y. Park, S.-W. Choi, S.S. Kim, A model for the enhancement of gas sensing properties in SnO2–ZnO core–shell nanofibres. J. Phys. D Appl. Phys. 44, 205403 (2011)

    Google Scholar 

  62. S.-W. Choi, A. Katoch, J. Zhang, S.S. Kim, Electrospun nanofibers of CuOSnO2 nanocomposite as semiconductor gas sensors for H2S detection. Sens. Actuators B: Chem. 176, 585–591 (2013)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Grant No. FRGS/600-IRMI/FRGS 5/3 (264/2019). The authors would like to thank the Research Management Institute (RMI), Universiti Teknologi MARA (UiTM), and Ministry of Higher Education Ministry (MoHE), Malaysia, for the financial support. The authors thank Mrs. Ts. Irmaizatussyehdany Buniyamin (Senior Research Officer), Mr. Ts. Salifairus Mohammad Jafar (UiTM Senior Science Officer), Mr. Mohd Azlan Jaafar (UiTM assistant engineer), Mr. Suhaimi Ahmad (UiTM assistant engineer), and Mr. Muhamad Faizal Abd Halim (Assistant Research Officer) for their kind support on this research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R. Mohamed or M. F. Malek.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohamed, R., Mamat, M.H., Malek, M.F. et al. Controllable synthesis of Sn:ZnO/SnO2 nanorods: pH-dependent growth for an ethanol gas sensor. J Mater Sci: Mater Electron 31, 15394–15406 (2020). https://doi.org/10.1007/s10854-020-04103-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04103-1

Navigation