Skip to main content
Log in

Graphene-based field-effect transistors integrated with microfluidic chip for real-time pH monitoring of seawater

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Seawater pH is an important parameter in marine and environmental researches, and it demands sensitive, portable, rapid and real-time sensing pH sensors. Here, we propose a graphene field-effect transistor (Gr-FET)-based pH sensor on flexible polyimide (PI) substrate integrated with microfluidic chip for real-time seawater pH detection. The monolayer graphene was grown by chemical vapor deposition, and transferred onto PI substrate to form transistor. The formed Gr-FET integrated with microfluidic channel forming the pH sensing chip, which is 2 × 3 cm2 in size, and 2 mm in thickness. Gr-FET-based pH sensor on PI substrate presents sensitivity of 23.98 mV/pH and 8.07 mV/pH in 1 × PBS and seawater solutions, respectively, and realizes pH detection in 1 min. The different ion type and concentration in the seawater solution could be contributed to the sensitivity reduction of the sensors in seawater. Real-time pH detection results of local fresh seawater show the fluctuation within 3% comparison with commercial pH sensor. The proposed Gr-FET-based pH sensor is economic, portable, fast and promising to realize real-time pH detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. K.S. Novoselov, A.K. Geim, S.V. Morozov et al., Nature 438, 197 (2005). https://doi.org/10.1038/nature04233

    Article  CAS  Google Scholar 

  2. Y. Zhang, Y.W. Tan, H.L. Stormer, P. Kim, Nature 438, 201 (2005). https://doi.org/10.1038/nature04235

    Article  CAS  Google Scholar 

  3. K.S. Kim, Y. Zhao, H. Jang et al., Nature 457, 706 (2009). https://doi.org/10.1038/nature07719

    Article  CAS  Google Scholar 

  4. W. Han, D. Nezich, K. Jing, T. Palacios, IEEE Electron Device Lett. 30, 547 (2009). https://doi.org/10.1109/LED.2009.2016443

    Article  CAS  Google Scholar 

  5. H. Wang, A. Hsu, J. Wu, J. Kong, T. Palacios, IEEE Electron Device Lett. 31, 906 (2010). https://doi.org/10.1109/LED.2010.2052017

    Article  CAS  Google Scholar 

  6. X. Wang, L. Zhi, K. Müllen, Nano Lett. 8, 323 (2008). https://doi.org/10.1021/nl072838r

    Article  CAS  Google Scholar 

  7. V.P. Verma, S. Das, I. Lahiri et al., Appl. Phys. Lett. 96, 203108 (2010). https://doi.org/10.1063/1.3431630

    Article  CAS  Google Scholar 

  8. S. Bae, H. Kim, Y. Lee et al., Nat. Nanotechnol. 5, 574 (2010). https://doi.org/10.1038/nnano.2010.132

    Article  CAS  Google Scholar 

  9. P.K. Ang, W. Chen, A.T.S. Wee, K.P. Loh, J. Am. Chem. Soc. 130, 14392 (2008). https://doi.org/10.1021/ja805090z

    Article  CAS  Google Scholar 

  10. S.K. Lee, H.Y. Jang, S. Jang et al., Nano Lett. 12, 3472 (2012). https://doi.org/10.1021/nl300948c

    Article  CAS  Google Scholar 

  11. C.-C. Lu, Y.-C. Lin, C.-H. Yeh, J.-C. Huang, P.-W. Chiu, ACS Nano 6, 4469 (2012). https://doi.org/10.1021/nn301199j

    Article  CAS  Google Scholar 

  12. Q. He, S. Wu, S. Gao et al., ACS Nano 5, 5038 (2011). https://doi.org/10.1021/nn201118c

    Article  CAS  Google Scholar 

  13. F. Schwierz, Nat. Nanotechnol. 5, 487 (2010). https://doi.org/10.1038/nnano.2010.89

    Article  CAS  Google Scholar 

  14. Y. Shao, J. Wang, H. Wu, J. Liu, I.A. Aksay, Y. Lin, Electroanalysis 22, 1027 (2010). https://doi.org/10.1002/elan.200900571

    Article  CAS  Google Scholar 

  15. Y. Dan, Y. Lu, N.J. Kybert, Z. Luo, A.C. Johnson, Nano Lett. 9, 1472 (2009). https://doi.org/10.1021/nl8033637

    Article  CAS  Google Scholar 

  16. C. Berger, Z. Song, X. Li et al., Science 312, 1191 (2006). https://doi.org/10.1126/science.1125925

    Article  CAS  Google Scholar 

  17. L. Lin, Y. Liu, L. Tang, J. Li, Analyst 136, 4732 (2011). https://doi.org/10.1039/C1AN15610A

    Article  CAS  Google Scholar 

  18. Q. He, S. Wu, Z. Yin et al., Chem. Sci. 3, 1764 (2012). https://doi.org/10.1021/jp201667p

    Article  CAS  Google Scholar 

  19. Y. Ohno, K. Maehashi, Y. Yamashiro, K. Matsumoto, Nano Lett. 9, 3318 (2009). https://doi.org/10.1021/nl901596m

    Article  CAS  Google Scholar 

  20. I. Heller, S. Chatoor, J. Männik, M.A. Zevenbergen, C. Dekker, S.G. Lemay, J. Am. Chem. Soc. 132, 17149 (2010). https://doi.org/10.1021/ja104850n

  21. S. Karastogianni, S. Girousi, S. Sotiropoulos, Encycl. Food Health (2016). https://doi.org/10.1016/B978-0-12-384947-2.00538-9

    Article  Google Scholar 

  22. P. Salvo, B. Melai, N. Calisi et al., Sens. Actuators B 256, 976 (2018). https://doi.org/10.1016/j.snb.2017.10.037

    Article  CAS  Google Scholar 

  23. P. Kraikaew, S. Jeanneret, Y. Soda et al., ACS Sensors 5, 650 (2020). https://doi.org/10.1021/acssensors.0c00031

    Article  CAS  Google Scholar 

  24. R. Pfattner, A.M. Foudeh, S. Chen et al., Adv. Electron. Mater. 5, 1800381 (2019). https://doi.org/10.1002/aelm.201800381

    Article  CAS  Google Scholar 

  25. K. Zhou, Z. Zhao, P. Yu, Z. Wang, Sens. Actuators B 320, 128403 (2020). https://doi.org/10.1016/j.snb.2020.128403

    Article  CAS  Google Scholar 

  26. S. Falina, M. Syamsul, Y. Iyama, M. Hasegawa, Y. Koga, H. Kawarada, Diam. Relat. Mater. 91, 15 (2019). https://doi.org/10.1016/j.diamond.2018.11.005

    Article  CAS  Google Scholar 

  27. N. Poma, F. Vivaldi, A. Bonini et al., Microchem. J. 148, 248 (2019). https://doi.org/10.1016/j.microc.2019.05.001

    Article  CAS  Google Scholar 

  28. J. Ristein, W. Zhang, F. Speck et al., J. Phys. D (2010). https://doi.org/10.1088/0022-3727/43/34/345303

    Article  Google Scholar 

  29. X. Tan, H.-J. Chuang, M.-W. Lin, Z. Zhou, M.M.-C. Cheng, J. Phys. Chem. C 117, 27155 (2013). https://doi.org/10.1021/jp409116r

    Article  CAS  Google Scholar 

  30. S.S. Kwon, J. Yi, W.W. Lee et al., ACS Appl. Mater. Interfaces 8, 834 (2016). https://doi.org/10.1021/acsami.5b10183

    Article  CAS  Google Scholar 

  31. Z. Wang, K. Yi, Q. Lin et al., Nat. Commun. 10, 1544 (2019). https://doi.org/10.1038/s41467-019-09573-4

    Article  CAS  Google Scholar 

  32. W. Wei, Z. Zeng, W. Liao, W.K. Chim, C. Zhu, ACS Appl. Nano Mater. 3, 403 (2020). https://doi.org/10.1021/acsanm.9b02037

    Article  CAS  Google Scholar 

  33. C. Staudinger, M. Strobl, J. Breininger, I. Klimant, S.M. Borisov, Sens. Actuators B 282, 204 (2019). https://doi.org/10.1016/j.snb.2018.11.048

    Article  CAS  Google Scholar 

  34. K. Xu, Y. Kitazumi, K. Kano, O. Shirai, Electrochem. Commun. 101, 73 (2019). https://doi.org/10.1016/j.elecom.2019.03.003

    Article  CAS  Google Scholar 

  35. T. Mitsuno, Y. Taniguchi, Y. Ohno, M. Nagase, Appl. Phys. Lett. 111, 213103 (2017). https://doi.org/10.1063/1.4994253

    Article  CAS  Google Scholar 

  36. T. Ono, Y. Kanai, K. Inoue et al., Nano Lett. 19, 4004 (2019). https://doi.org/10.1021/acs.nanolett.9b01335

    Article  CAS  Google Scholar 

  37. X Liu, T Du, H Zhang, C Sun (2019) 2019 41st Ann. Int. Conf. IEEE Eng. Med. Biol. Soc. (EMBC), https://doi.org/10.1109/EMBC.2019.8856991

  38. T.-Y. Chen, P.T.K. Loan, C.-L. Hsu et al., Biosens. Bioelectron. 41, 103 (2013). https://doi.org/10.1016/j.bios.2012.07.059

    Article  CAS  Google Scholar 

  39. M.J. Kiani, M.T. Ahmadi, H.K. Feiz Abadi, M. Rahmani, A. Hashim, F.K. Che Harun, Nanoscale Res. Lett. 8, 173 (2013). https://doi.org/10.1186/1556-276X-8-173

    Article  CAS  Google Scholar 

  40. B. Anes, R.J.N. Bettencourt, C. da Silva, M.F.C. Oliveira, Talanta 193, 118 (2019). https://doi.org/10.1016/j.talanta.2018.09.075

    Article  CAS  Google Scholar 

  41. J.W. Runcie, C. Krause, S.A. Torres Gabarda et al., Biogeosciences 15, 4291 (2018). https://doi.org/10.5194/bg-15-4291-2018

    Article  CAS  Google Scholar 

  42. K. McLaughlin, A. Dickson, S.B. Weisberg et al., Reg. Stud. Mar. Sci. 12, 11 (2017). https://doi.org/10.1016/j.rsma.2017.02.008

    Article  Google Scholar 

  43. V.C. Pinto, C.F. Araújo, P.J. Sousa, L.M. Gonçalves, G. Minas, Sens. Actuators B 290, 285 (2019). https://doi.org/10.1016/j.snb.2019.03.098

    Article  CAS  Google Scholar 

  44. I. Jung, D.A. Dikin, R.D. Piner, R.S. Ruoff, Nano Lett. 8, 4283 (2008). https://doi.org/10.1021/nl8019938

    Article  CAS  Google Scholar 

  45. M.H. Rümmeli, S. Gorantla, A. Bachmatiuk, et al. Chem. Mater. 25, 4861 (2013). https://doi.org/10.1021/cm401669k

    Article  CAS  Google Scholar 

  46. J. Chang, S. Mao, Y. Zhang et al., Nanoscale 5, 3620 (2013). https://doi.org/10.1039/C3NR00141E

    Article  CAS  Google Scholar 

  47. X. Wang, X. Li, L. Zhang et al., Science 324, 768 (2009). https://doi.org/10.1126/science.1170335

    Article  CAS  Google Scholar 

  48. B. Mailly-Giacchetti, A. Hsu, H. Wang et al., J. Appl. Phys. 114, 084505 (2013). https://doi.org/10.1063/1.4819219

    Article  CAS  Google Scholar 

  49. M.H. Lee, B.J. Kim, K.H. Lee et al., Nanoscale 7, 7540 (2015). https://doi.org/10.1039/C5NR00414D

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Plan of China (Grant No. 2019YFC1407800), Natural Science Foundation for Distinguished Young Scientist of Shandong Province (Grant No. JQ201814), the Key Research Plan of Shandong Province (2017GGX10106) and Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong. We would like to thank Haiyan Yu, Xiaomin Zhao, Sen Wang and Yuyu Guo from State Key laboratory of Microbial Technology of Shandong University for help and guidance in material characterization.

Author information

Authors and Affiliations

Authors

Contributions

YZ and LH designed the study; JG carried out the experiments and wrote this manuscript; YW assisted in the completion of the experiment; YH conducted graphene nanosheets characterization; YG and CW made microfluidic chips.

Corresponding author

Correspondence to Yu Zhang.

Ethics declarations

Conflict of interest

All the authors declare no conflicts of interest with this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1092 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, J., Wang, Y., Han, Y. et al. Graphene-based field-effect transistors integrated with microfluidic chip for real-time pH monitoring of seawater. J Mater Sci: Mater Electron 31, 15372–15380 (2020). https://doi.org/10.1007/s10854-020-04101-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04101-3

Navigation