Skip to main content
Log in

Raman spectra, photoluminescence, and low-frequency dielectric properties of Ba0.97La0.02Ti1−xNb4x/5O3 (x = 0.00, 0.05) ceramics at room temperature

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We are interested to investigate the effect of Nb5+ addition on morphological, dielectric, and optical properties of Ba0.97La0.02Ti1−xNb4x/5O3 (for x = 0.00, 0.05) ceramics. The BLT and BLT0.95N0.04 were successfully synthesized by a low-cost molten-salt method. In addition, the structural phase purity of ceramics was definite by using X-ray diffraction (XRD) at room temperature (RT). Afterward, the morphology of our examples was explored using transmission electron microscopy (TEM) as well as dielectric characterizations. The dielectric constant decreased with increasing frequency. This is assigned to Maxwell–Wagner (M–W) interfacial polarization. What’s more, the room temperature photoluminescence (PL) spectra indicated a synergic effect on BLT1−xNb4x/5 ceramics. At RT, compared to BLT sample, the peaks in the visible region for doped compound are shifted to the highest wavelengths. Note also that width at mid-height reduce for Nb5+-doped BLT than none-doped example. Based on the photometric characterization and the results of the CIE coordinates, they discovered that synthesized perovskite may represent an appropriate candidate for semiconductor lighting devices and optoelectronic applications. Importantly, the tetragonal phases of BLT and BLT0.95Nb0.04 examples can be improved by XRD and Raman spectrum. The incorporation of ions La3+ in the Ba-site is remarkable by the peak observed about 805 cm−1. As well, all modes show a significant broadening with the incorporation of Nb5+ on the titanium-site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. P.K. Singh, S. Cochrane, W.T. Liu, D.B. Knorr, J.M. Borrego, E.J. Rymaszewski, T.M. Lu, Appl. Phys. Lett. 66, 3683–3685 (1995)

    CAS  Google Scholar 

  2. A. Kingon, Nature 401, 658–659 (1999)

    CAS  Google Scholar 

  3. J. Wang, B. Xu, G. Liu, J. Zhang, T. Zhang, Sens. Actuators B 66, 159–160 (2000)

    CAS  Google Scholar 

  4. P. Wang, C. Fan, Y. Wang, G. Ding, P. Yuan, Mater. Res. Bull. 48, 869–877 (2013)

    CAS  Google Scholar 

  5. B. Jaffe, J. Am. Ceram. Soc. 41, 494–498 (1958)

    CAS  Google Scholar 

  6. G.H. Haertling, J. Am. Ceram. Soc. 82, 797–818 (1999)

    CAS  Google Scholar 

  7. K. Uchino, S. Cagatay, B. Koc, S. Dong, P. Bouchilloux, M. Strauss, J. Electroceram. 13, 393–401 (2004)

    Google Scholar 

  8. B. Jaffe, W.R. Cook, Piezoelectric Ceramics (Academic, London, 1971), p. 326

    Google Scholar 

  9. B.D. Stojanovic, C.R. Foschini, M.A. Zaghete, F.O.S. Veira, K.A. Peron, M. Cilense, J.A. Varela, J. Mater. Process. Technol. 143, 802–806 (2003)

    Google Scholar 

  10. S. Wada, S. Kondo, C. Moriyoshi, Y. Kuroiwa, Jpn. J. Appl. Phys. 47, 7612–7616 (2008)

    CAS  Google Scholar 

  11. Y. Xu, J.D. Mackenzie, J. Non-cryst. Solids 246, 136–149 (1999)

    CAS  Google Scholar 

  12. M.L. Moreria, M.F.C. Gurgel, G.P. Mambrini, E.R. Leite, P.S. Pizani, J.A. Varela, E. Longo, J. Phys. Chem. A. 112, 8938–8942 (2008)

    Google Scholar 

  13. M.L. Moreria, G.P. Mambrini, D.P. Volatini, E.R. Leite, M.O. Orlandi, P.S. Pizani, V.R. Mastelaro, C.O. Paiva-Santos, E. Longo, J.A. Varela, Chem. Mater. 20, 5381 (2008)

    Google Scholar 

  14. P.S. Pizani, E.R. Leite, F.M. Pontes, E.C. Paris, J.H. Rangel, E.J.H. Lee, E. Longo, P. Delega, J.A. Varela, Appl. Phys. Lett. 77, 824–826 (2000)

    CAS  Google Scholar 

  15. L. Liu, T. Ning, Y. Ren, Z. Sun, F. Wang, W. Zhou, S. Xie, L. Song, S. Luo, D. Liu, J. Shen, W. Ma, Y. Zhou, Mater. Sci. Eng. B 149, 41–46 (2008)

    CAS  Google Scholar 

  16. J. Meng et al., Phys. Lett. A. 205, 72–76 (1995)

    CAS  Google Scholar 

  17. M.-S. Zhang et al., Solid State Commun. 119, 659–663 (2001)

    CAS  Google Scholar 

  18. J. Hao, Y. Zhang, X. Wei, Angew. Chem. 123, 6876–6880 (2011)

    Google Scholar 

  19. M. Mohapatra et al., J. Lumin. 130, 2402–2406 (2010)

    CAS  Google Scholar 

  20. M.L. Moreira, M.F.C. Gurgel, G.P. Mambrini, E.R. Leite, P.S. Pizani, J.A. Varela, E. Longo, J. Phys. Chem. A 112, 8938–8942 (2008)

    CAS  Google Scholar 

  21. K.-M. Lin, C.-C. Lin, C.-Y. Hsiao, Y.-Y. Li, J. Lumin. 127, 561–567 (2007)

    CAS  Google Scholar 

  22. G.F.G. Freitas, R.S. Nasar, M. Cerqueira, D.M.A. Melo, E. Longo, J.A. Varel, Mater. Sci. Eng. A 434, 19–22 (2006)

    Google Scholar 

  23. I. Wuled Lenggoro, C. Panatarani, K. Okuyama, Mater. Sci. Eng. B 113, 60–66 (2004)

    Google Scholar 

  24. J.K. Park, H. Ryu, H.D. Park, S.Y. Choi, J. Eur. Ceram. Soc. 21, 535–543 (2001)

    CAS  Google Scholar 

  25. R.C. Lima, J.W.M. Espinosa, M.F.C. Gurgel, E.C. Paris, E.R. Leite, M.R. Joya, P.S. Pizani, J.A. Varela, E. Longo, J. Appl. Phys. 100, 034917-1-8 (2006)

    Google Scholar 

  26. A.T. de Figueiredo, V.M. Longo, S. de Lazaro, V.R. Mastelaro, F.S.D. Vicente, A.C. Hernandes, M.S. Li, J.A. Varela, E. Longo, J. Lumin. 126, 403–407 (2007)

    Google Scholar 

  27. D.P. Dutta et al., J. Lumin. 148, 230–237 (2014)

    CAS  Google Scholar 

  28. S. Itoh, H. Toki, K. Tamura, F. Kataoka, J. Appl. Phys. 38, 6387–6391 (1999)

    CAS  Google Scholar 

  29. C. Jiang, Z. Lin, J. Zhang, Y. Zhao, Appl. Phys. Lett. 94, 191906-1-3 (2009)

    Google Scholar 

  30. H. Yamamoto, S. Okamoto, H. Kobayashi, J Lumin 100, 325–332 (2002)

    CAS  Google Scholar 

  31. H. Guo, Y.-M. Qiao, J.-F. Zheng, L.-H. Zhao, Chin. J. Chem. Phys. 21, 233 (2008)

    CAS  Google Scholar 

  32. F.M. Pontes, C.D. Pinheiro, E. Longo, E.R. Leite, S.R. de Lazaro, R. Magnami, P.S. Pizani, T.M. Boschi, F. Lanciotti, J. Lumin. 104, 175–185 (2003)

    CAS  Google Scholar 

  33. M.L. Moreira, G.P. Mambrini, D.P. Volanti, E.R. Leite, M.O. Orlandi, P.S. Pizani, V.R. Mastelaro, C.O. Paiva-Santos, E. Longo, J.A. Varela, Chem. Mater. 20, 5381–5387 (2008)

    CAS  Google Scholar 

  34. J. Kaur, R.K. Kotnala, K.C. Verma, J. Optoelectron. Adv. Mater. 14, 219–232 (2012)

    CAS  Google Scholar 

  35. P. Jing, W. Chuan-Ju, S. Tang-You, Z. Wen-Ning, W. Xiao-Feng, L. Wen, W. Shuang-Bao, J. Quan-Lin, X. Zhi-Mou, Chin. Phys. B 21, 067702 (2012)

    Google Scholar 

  36. Y. Liu, W.A. Pisarski, S. Zeng, C. Xu, Q. Yang, Opt. Express 17, 9089–9098 (2009)

    CAS  Google Scholar 

  37. J. Li, Y.J. Wu, T. Yamamoto, M. Kuwabara, Sci. Technol. Adv. Mater. 5, 393–398 (2004)

    CAS  Google Scholar 

  38. D.K. Patel, B. Vishwanadh, V. Sudarsan, R.K. Vatsa, S.K. Kulshreshtha, J. Am. Ceram. Soc. 94, 482–487 (2011)

    CAS  Google Scholar 

  39. J.P. Vernon, N. Hobbs, Y. Cai, A. Lethbridge, P. Vukusic, D.D. Deheynd, K.H. Sandhage, J. Mater. Chem. 22, 10435–10437 (2012)

    CAS  Google Scholar 

  40. M. Borah, D. Mohanta, D. Sanyal, M. Chakrabarti, D. Jana, Europhys. J. Appl. Phys. 59, 10402-1-5 (2012)

    Google Scholar 

  41. M. Ganguly, S.K. Rout, W.S. Woo, C.W. Ahn, I.W. Kim, Physica B 411, 26–34 (2013)

    CAS  Google Scholar 

  42. E. Kormaz, N.O. Kalaycioglu, Bull. Mater. Sci. 35, 1011–1017 (2012)

    Google Scholar 

  43. C. Fouassier, Curr. Opin. Solid State Mater. Sci. 2, 231–235 (1997)

    CAS  Google Scholar 

  44. A. Trave, F. Buda, A. Fasolino, Phys. Rev. Lett. 77, 5405–5408 (1996)

    CAS  Google Scholar 

  45. J.R. Agger, M.W. Anderson, M.E. Pemble, O. Terasaki, Y. Nozue, J. Phys. Chem. B 102, 3345–3353 (1998)

    CAS  Google Scholar 

  46. J.A. Nelson, E.L. Brant, M.J. Wagner, Chem. Mater. 15, 688–693 (2003)

    CAS  Google Scholar 

  47. K. Uchino, E. Sadanaga, T. Hirose, J. Am. Ceram. Soc. 72, 1555–1558 (1989)

    CAS  Google Scholar 

  48. M. Jebli, Ch Rayssi, N. Hamdaoui, S. Rabaoui, J. Dhahri, M. Ben Henda, I. Shaarany, J. Alloys Compd. 784, 204–212 (2019)

    CAS  Google Scholar 

  49. A.K. Jonscher, Nature 267, 673–679 (1977)

    CAS  Google Scholar 

  50. G. El-Metwally, M. Fadel, A.M. Shakra, M.A. Afifi, J. Optoelectron. Adv. Mater. 10, 1320–1327 (2008)

    CAS  Google Scholar 

  51. N.K. Singh, A. Panigrahi, R.N.P. Chaudhary, Mater. Lett. 50, 1–5 (2001)

    CAS  Google Scholar 

  52. T. Kar, R.N.P. Chaudhary, Mater. Sci. Eng. B 90, 224–233 (2002)

    Google Scholar 

  53. Ch Rayssi et al., J. Alloys Compd. 759, 93–99 (2018)

    CAS  Google Scholar 

  54. M. Chanda, Metals and Alloys, vol. 3 (The Macmillan Company of India Ltd., New Delhi, 1980), pp. 103–135

    Google Scholar 

  55. Ch Rayssi et al., J. RSC Adv. 8, 17139–17150 (2018)

    CAS  Google Scholar 

  56. M.S. Randall, A.S. Gurav, L.A. Mann, J.J. Beeson, M. Maguire, R.J. Vaughan, in Abstracts of the 105th Annual Meeting of the American Ceramic Society, Nashville, 2003, vol. 172

  57. H. Kishi, Y. Mizuno, H. Chazono, Jpn. J. Appl. Phys. 42, 1–15 (2003)

    CAS  Google Scholar 

  58. P. Ward, in Electronic Ceramics, vol 29, ed. by B.C.H. Steele (Elsevier, New York, 1991)

    Google Scholar 

  59. W.P. Chen, L.T. Li, Y. Wang, Z.L. Gui, J. Mater. Res. 13, 1110–1112 (1998)

    CAS  Google Scholar 

  60. S.J. Zhang, F. Li, X.N. Jiang, J. Kim, J. Luo, X.C. Geng, Prog. Mater. Sci. 68, 1–66 (2015)

    CAS  Google Scholar 

  61. W. Heywang, H. Thomann, in Electronic Ceramics, ed. by B.C.H. Steele (Elsevier, New York, 1991), p. 49

    Google Scholar 

  62. L.L. Hench, J.K. West, Principles of Electronic Ceramics (Wiley, New York, 1990)

    Google Scholar 

  63. A. Molak, M. Paluch, S. Pawlus, J. Klimontko, Z. Ujma, I. Gruszka, J. Phys. D 38, 1450–1460 (2005)

    CAS  Google Scholar 

  64. A. Ben Jazia Kharrat et al., J. Alloys Compd. 741, 723–733 (2018)

    CAS  Google Scholar 

  65. K. Yang, X. Huang, Y. Huang, L. Xie, P. Jiang, Appl. Chem. Mater. 25, 2327–2338 (2013)

    CAS  Google Scholar 

  66. H. Rahmouni, M. Smari, B. Cherif, E. Dhahri, K. Khirouni, Dalton Trans. 44, 10457–10466 (2015)

    CAS  Google Scholar 

  67. P.R. Bueno, W.C. Ribeiro, M.A. Ramirez, J.A. Varela, E. Longo, Appl. Phys. Lett. 90, 142912-1-3 (2007)

    Google Scholar 

  68. Y.J. Wong, J. Hassan, M. Hashim, J. Alloys Compd. 571, 138–144 (2013)

    CAS  Google Scholar 

  69. Z. Wang, N.M. Han, Y. Wu, X. Liu, X. Shen, Q. Zheng, J.-K. Kim, Carbon 123, 385–394 (2017)

    CAS  Google Scholar 

  70. P.R.F. Rocha et al., Sci. Rep. 6, 34843–34843 (2016)

    CAS  Google Scholar 

  71. H.N.A. Halim, K.L.K. Mee, IPCBEE 12, 263–267 (2011)

    Google Scholar 

  72. C.S. Ramya, S. Selvasekarapandian, G. Hirankumar, T. Savitha, P.C. Angelo, J. Non-cryst. Solids 354, 1494–1502 (2008)

    CAS  Google Scholar 

  73. R. Jacob et al., Process. Appl. Ceram. 9, 73–79 (2015)

    CAS  Google Scholar 

  74. J.C.G. Bunzli, Coord. Chem. Rev. 19, 293–294 (2015)

    Google Scholar 

  75. B. Bouma, G. Blasse, J. Phys. Chem. Solids 56, 261–265 (1995)

    CAS  Google Scholar 

  76. P.S. Basso, H.C. Lanciotti, F. Baschi, T.M. Pontes, F.M. Longo, E.R. Leite, Appl. Phys. Lett. 81, 253–255 (2002)

    Google Scholar 

  77. J.C.G. Bunzli, C. Piguet, Chem. Soc. Rev. 34, 1048–1077 (2005)

    Google Scholar 

  78. K. Kandula et al., RSC Adv. 8, 15282–15289 (2018)

    CAS  Google Scholar 

  79. D.K. Khatua et al., Phys. Rev. Lett. 116, 117601-1-5 (2016)

    Google Scholar 

  80. B.A. Block, B.W. Wessels, Appl. Phys. Lett. 65, 25–27 (1994)

    CAS  Google Scholar 

  81. A.E. Souza, S.R. Teixeira, C. Morilla-Santos, W.H. Schreiner, P.N.L. Filhod, E. Longo, J. Mater. Chem. C 2, 7056–7070 (2014)

    CAS  Google Scholar 

  82. P. Senthilkumar, S. Dhanuskodi, A.R. Thomas, R. Philip, Mater. Res. Express 4, 085027 (2017)

    Google Scholar 

  83. R. Davis, K.S. Gibson, Filters for the Reproduction of Sunlight and Daylight and the Determination of Color Temperature. Bureau of Standards Misc. Publ. 114, U.S. Gov’t. Printing Office, Washington, 1931. This publication has been out of print for many years but was reprinted in Precision Measurement and Calibration, Selected NBS Papers on Image Optics. NBS Special Publication 300, ed. by C.S. McCamy, vol. 10 (U.S. Government Printing Office, Washington, DC, 1972), pp. 641–805, note pp. 705, 708, and 709.

  84. L.A. Jones, Chm., Report of Optical Society of America Committee on Unit of Photographic Intensity, Proceedings of the International Congress on Photography 7, London, 1928, vol 170–173 (Heffer, Cambridge, 1929), pp. 152–161

  85. “Commission Internationale de I’Eclairage, Huitieme Session, Cambridge, Septembre 1931,*’, Recueil des Travaux et Compte Rendu des SPances, vol. 2 (The University Press, Cambridge, RCsolution, 1932), pp. 19–23

  86. R. Davis, Not. Bur. Stand. J. Res. 7, 791–797 (1931)

    CAS  Google Scholar 

  87. D.B. Judd, J. Opt. Soc. Am. 26, 421–426 (1936)

    Google Scholar 

  88. K.L. Kelly, J. Opt. Soc. Am. 53, 999–1002 (1963)

    Google Scholar 

  89. A.R. Robertson, J. Opt. Soc. Am. 58, 1528–1535 (1968)

    Google Scholar 

  90. W. Holm, J. Krochmann, Ermittl. lhnlichste Farbtemperatur Farbe. 24, 91–96 (1975)

    Google Scholar 

  91. L. Schanda, M. Meszaros, G. Czibula, Color Res. Appl. 3, 65–69 (1978)

    Google Scholar 

  92. M. Krystek, Color Res. Appl. 10, 38–40 (1984)

    Google Scholar 

  93. Q. Xingzhong, Color Res. Appl. 12, 285–287 (1987)

    Google Scholar 

  94. C.S. McCamy, Correlated Color Temperature as an Explicit Function of Chromaticity Coordinates (New York, 1992). pp. 12590–1804

    Google Scholar 

  95. M. Choudhury, S.K. Sharma, RSC Adv. 5, 51102–51109 (2015)

    Google Scholar 

  96. S. Dutta, S. Som, S.K. Sharma, Dalton Trans. 42, 9461–9654 (2013)

    Google Scholar 

  97. J. Singh, J. Manam, Mater. Res. Bull. 88, 105–113 (2017)

    CAS  Google Scholar 

  98. D.K. Singh et al., Electron. Mater. Lett. 13, 292–301 (2017)

    CAS  Google Scholar 

  99. P.R. Rani, Mater. Res. Bull. 110, 159–168 (2019)

    CAS  Google Scholar 

  100. P. Kumari, J. Manam, Spectrochim. Acta A 152, 109–118 (2015)

    Google Scholar 

  101. J. Pokorny, U.M. Pasha, L. Ben, O.P. Thakur, D.C. Sinclair, I.M. Reaney, J. Appl. Phys. 109, 114110–114110 (2011)

    Google Scholar 

  102. D.-Y. Lu, Y.-Y. Peng, X.-Y. Yu, X.-Y. Sun, J. Alloys Compd. 681, 128–138 (2016)

    CAS  Google Scholar 

  103. R. Kumara, I. Singh, R. Meena, K. Asokan, B. Birajdar, S. Patnaik, Mater. Res. Bull. 123, 1–7 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marwa Jebli.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jebli, M., Hamdaoui, N., Smiri, B. et al. Raman spectra, photoluminescence, and low-frequency dielectric properties of Ba0.97La0.02Ti1−xNb4x/5O3 (x = 0.00, 0.05) ceramics at room temperature. J Mater Sci: Mater Electron 31, 15296–15307 (2020). https://doi.org/10.1007/s10854-020-04094-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04094-z

Navigation