Skip to main content

Advertisement

Log in

Enhancing the electrochemical and cyclic performance of IRFBs through electrode modification using novel MnO2@CeO2 composite

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, we have coated MnO2@CeO2 composites onto graphite felts (GF) by electrostatic spraying leading to substantially improved electrochemical performance characteristics of iron redox flow batteries. GF are extensively used as electrodes but they do not have the desired electrochemical properties. MnO2@CeO2 composites have novel electrocatalyst features. Hence, MnO2@CeO2 composites were developed and applied to GF. Chemical and structural features of the bare graphite felt electrode and MnO2@CeO2 composite-modified graphite felt electrode (MGF) were characterized using scanning electron microscopy, energy dispersive X-ray analysis, transmission electron microscopy, X-ray diffraction, and Brunauer–Emmett–Teller surface area analysis. Similarly, the electrochemical performance was investigated using cyclic voltammetry, electrochemical impedance spectroscopy, Tafel, and charge–discharge performance experiments. The charge−discharge experiments were performed at 1 to 3 mg cm− 2 weight of MGFs and varying the current densities from 40 to 70 mA cm− 2. The coulombic efficiency (ηC) and peak power density (PPD) of the cell (132 cm2) determined at 50 mA cm− 2 for 2 mg cm− 2-MGF electrode was found to be 99.10% and 55.56 W cm− 2, respectively. Among the three different types of electrodes, the MGF electrode showed better electrocatalytic performance mainly due to the excellent conducting network of the oxygen moieties of MnO2@CeO2 composites. After 25 cycles, the average ηC and PPD of the cell using 2 mg cm− 2-MGF was found to be 96.06% and 55.16 mW cm− 2, respectively, indicating the good stability of the electrode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. C. Julien, A. Mauger, A. Vijh, k. Zaghib, Lithium batteries, (Springer,2016)

  2. B. Li, M. Gu, Z. Nie, Y. Shao, Q. Luo, X. Wei, Nano Lett. 13, 1330 (2013)

    Article  Google Scholar 

  3. C. Liu, J. Yuan, R. Masse, X. Jia, W. Bi, Z. Neale, Z Adv. Mater. 1905245 (2020)

  4. S. Xin, Y.X. Yin, Y.G. Guo, L.J. Wan, Adv. Mater. 26, 1261 (2014)

    Article  CAS  Google Scholar 

  5. M. Skyllas-Kazacos, M. Rychcik, R.G. Robins, A. Fane, M. Green, J. Electrochem. Soc. 133, 1057 (1986)

    Article  CAS  Google Scholar 

  6. E. Sum, M. Rychcik, M. Skyllas-Kazacos, J. Power Sources 16, 85 (1985)

    Article  CAS  Google Scholar 

  7. H. Jiang, Y. Zeng, M. Wu, W. Shyy, T. Zhao, Appl. Energy 240, 226 (2019)

    Article  CAS  Google Scholar 

  8. E. Sum, M. Skyllas-Kazacos, J. Power Sources 15, 179 (1985)

    Article  CAS  Google Scholar 

  9. X.W. Wu, Q. Deng, C. Peng, X.X. Zeng, A.J. Wu, C.J. Zhou, ACS Appl. Mater. Interface 11, 11451 (2019)

    Article  CAS  Google Scholar 

  10. T.M. Tseng, R.H. Huang, C.Y. Huang, C.C. Liu, K.L. Hsueh, F.S. Shieu, J. Electrochem. Soc. 160, A690 (2014)

    Article  Google Scholar 

  11. F.Q. Xue, Y.L. Wang, W.H. Wang, X.D. Wang, Electrochim. Acta 53, 6636 (2008)

    Article  CAS  Google Scholar 

  12. C. Flox, J. Rubio-Garcia, R. Nafria, R. Zamani, M. Skoumal, T. Andreu, Carbon 50, 2372 (2012)

    Article  CAS  Google Scholar 

  13. Y.C. Chang, J.Y. Chen, D.M. Kabtamu, G.Y. Lin, N.Y. Hsu, Y.S. Chou, J. Power Sources 364, 1 (2017)

    Article  CAS  Google Scholar 

  14. T.M. Tseng, R.H. Huang, C.Y. Huang, C.C. Liu, K.L. Hsueh, F.S. Shieu, J. Electrochem. Soc. 161, A1132 (2014)

    Article  CAS  Google Scholar 

  15. T.M. Marques, O.P. Ferreira, J.A. Da Costa, K. Fujisawa, M. Terrones, B.C. Viana, J. Phys. Chem. Solids 87, 213 (2015)

    Article  CAS  Google Scholar 

  16. M. Grünbacher, L. Schlicker, M.F. Bekheet, A. Gurlo, B. Klötzer, S. Penner, Phys. Chem. 20, 22099 (2018)

    Google Scholar 

  17. A. Rajendran, S. Kandasamy, Mater. Res. Innov. 23, 15 (2019)

    CAS  Google Scholar 

  18. R. Saravanan, S. Agarwal, V.K. Gupta, M.M. Khan, F. Gracia, E. Mosquera, J. Photochem. Photobiol. A. 353, 499 (2018)

    Article  CAS  Google Scholar 

  19. J. Papavasiliou, M. Rawski, J. Vakros, G. Avgouropoulos, ChemCatChem. 10, 2096 (2018)

    Article  CAS  Google Scholar 

  20. H. Zhang, J. Gu, J. Tong, Y. Hu, B. Guan, B. Hu, Chem. Eng. J. 286, 139 (2016)

    Article  CAS  Google Scholar 

  21. H. Zhou, J. Xi, Z. Li, Z. Zhang, L. Yu, L. Liu, RSC Adv. 4, 61912 (2014)

    Article  CAS  Google Scholar 

  22. M. Govindan, K. He, I.S. Moon, Int. J. Electrochem. Sci. 8, 10265 (2013)

    CAS  Google Scholar 

  23. M.A. Rodrigues, A.C. Catto, E. Longo, E. Nossol, R.C. Lima, J. Rare Earth. 36, 1074 (2018)

    Article  CAS  Google Scholar 

  24. H. Lin, J. Hu, H. Rong, Y. Zhang, S. Mai, L. Xing, J. Mater. Chem. A. 2, 9272 (2014)

    Article  CAS  Google Scholar 

  25. X. Yan, L. Tian, M. He, X. Chen, Nano Lett. 15, 6015 (2015)

    Article  CAS  Google Scholar 

  26. H. Wang, W. Yang, X. Wang, L. Huang, Y. Zhang, S. Yao, Sensor Actuat B-Chem. 304, 127389 (2020)

    Article  Google Scholar 

  27. T. Chhabra, A. Kumar, A. Bahuguna, V. Krishnan, Vacuum 160, 333 (2019)

    Article  CAS  Google Scholar 

  28. Q. Zhou, L. Zhang, P. Zuo, Y. Wang, Z. Yu, RSC adv. 8, 36161 (2018)

    Article  CAS  Google Scholar 

  29. D. Kong, J. Luo, Y. Wang, W. Ren, T. Yu, Y. Luo, Adv. Funct. Mater. 24, 3815 (2014)

    Article  CAS  Google Scholar 

  30. Y. Chen, Y. Zhang, D. Geng, R. Li, H. Hong, J. Chen, X. Sun, Carbon 49, 4434 (2011)

    Article  CAS  Google Scholar 

  31. K.J. Kim, S.-W. Lee, T. Yim, J.G. Kim, J.W. Choi, J.H. Kim, Sci. Rep. 4, 6906 (2014)

    Article  CAS  Google Scholar 

  32. G.P. Ojha, B. Pant, S.J. Park, M. Park, H.Y. Kim, J. Colloid Interface Sci. 494, 338 (2017)

    Article  CAS  Google Scholar 

  33. K.L. Hawthorne, T.J. Petek, M.A. Miller, J.S. Wainright, R.F. Savinell, J. Electrochem. Soc. 162, A108 (2015)

    Article  CAS  Google Scholar 

  34. M.C. Tucker, A. Phillips, A.Z. Weber, ChemSusChem. 8, 3996 (2015)

    Article  CAS  Google Scholar 

  35. K. Gong, F. Xu, J.B. Grunewald, X. Ma, Y. Zhao, S. Gu, Y. Yan, ACS Energy Lett. 1, 89 (2016)

    Article  CAS  Google Scholar 

  36. Y. Wen, H. Zhang, P. Qian, H. Zhou, P. Zhao, B. Yi, Y. Yang, Electrochim. Acta 2006. 51, 3769 (2006)

    Article  CAS  Google Scholar 

  37. A.K. Manohar, K.M. Kim, E. Plichta, M. Hendrickson, S. Rawlings, S. Narayanan, J. Electrochem. Soc. 163, A5118 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully thank the Department of Science and Technology (DST), India, for financial support under MES scheme 2016 ((Grant Number DST/TMD/MES/2k16/83)). We also thank the Centre for Incubation, Innovation, Research and Consultancy (CIIRC), Jyothy Institute of Technology and Sri Sringeri Sharadha Peetam for supporting this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. B. Muralidhara.

Ethics declarations

Conflict of interest

H. B. Muralidhara, Centre for Incubation, Innovation, Research and Consultancy (CIIRC), Jyothy Institute of Technology, Thataguni, Off Kanakapura Road, Bangalore 560 082, Karnataka, India, has received research grants from Department of Science and Technology (DST), India. The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anantha, M.S., Anarghya, D., Hu, C. et al. Enhancing the electrochemical and cyclic performance of IRFBs through electrode modification using novel MnO2@CeO2 composite. J Mater Sci: Mater Electron 31, 15286–15295 (2020). https://doi.org/10.1007/s10854-020-04093-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04093-0

Navigation