Reduced contact resistance in organic field-effect transistors fabricated using floating film transfer method

Abstract

This paper presents an in-depth performance-based comparison of organic field-effect transistors (OFETs) prepared using the conventional spin coating (SC) technique and a recently developed floating film transfer method (FTM). A remarkable improvement in the performance of transistors fabricated using FTM was achieved in comparison to their SC counterparts. The estimated value of width-normalized contact resistance in FTM-based OFETs was an order lower in comparison to that of transistors prepared using SC technique. The observed results were credited to a significant enhancement in the length of π-conjugation due to the presence of edge-on oriented polymer chains of active layer deposited using FTM, leading to the lowering of carrier injection barrier at the Au/P3HT interface. These results were well supported through absorption, photoluminescence and Raman measurements as well as the anisotropy measurements using polarized absorption spectra, which also pointed towards the improvement in the polymer chain alignment of thin films prepared by FTM over that prepared by the conventional SC technique. The results indicate thin film morphology as a key towards reducing the contact resistance in OFETs.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. 1.

    A. Facchetti, Chem. Mater. 23, 733–758 (2011)

    CAS  Google Scholar 

  2. 2.

    M.L. Jones, D.M. Huang, B. Chakrabarti, C. Groves, J. Phys. Chem. C 120, 4240–4250 (2016)

    CAS  Google Scholar 

  3. 3.

    Y. Ogata, D. Kawaguchi, K. Tanaka, J. Phys. Chem. Lett. 6, 4794–4798 (2015)

    CAS  Google Scholar 

  4. 4.

    N. Koch, Phys. Status Solidi RRL 6, 277–293 (2012)

    CAS  Google Scholar 

  5. 5.

    G. Gelinck, P. Heremans, K. Nomoto, T.D. Anthopoulos, Adv. Mater. 22, 3778–3798 (2010)

    CAS  Google Scholar 

  6. 6.

    H. Marien, M.S.J. Steyaert, E. Veenendaal, P. Heremans, IEEE J. Solid State Circuits 47, 1–9 (2012)

    Google Scholar 

  7. 7.

    C. Di, F. Zhang, D. Zhu, Adv. Mater. 25, 313–330 (2013)

    CAS  Google Scholar 

  8. 8.

    V. Singh, M. Yano, W. Takashima, K. Kaneto, Jpn. J. Appl. Phys. 45, 534–537 (2006)

    CAS  Google Scholar 

  9. 9.

    K. Bhargava, V. Singh, J. Comput. Electron. 13, 585–592 (2014)

    CAS  Google Scholar 

  10. 10.

    K. Bhargava, A. Bilgaiyan, V. Singh, J. Nanosci. Nanotechnol. 15, 9414–9422 (2015)

    CAS  Google Scholar 

  11. 11.

    Y. Guo, G. Yu, Y. Liu, Adv. Mater. 22, 4427–4447 (2010)

    CAS  Google Scholar 

  12. 12.

    E. Orgiu, N. Crivillers, M. Herder, L. Grubert, M. Patzel, J. Frisch, E. Pavlica, D.T. Duong, G. Bratina, A. Salleo, N. Koch, S. Hecht, P. Samori, Nat. Chem. 4, 675–679 (2012)

    CAS  Google Scholar 

  13. 13.

    V. Singh, A.K. Thakur, S.S. Pandey, W. Takashima, K. Kaneto, Appl. Phys. Exp. 1, 021801 (2008)

    Google Scholar 

  14. 14.

    V. Singh, A.K. Thakur, S.S. Pandey, W. Takashima, K. Kaneto, Synth. Met. 158, 283–286 (2008)

    CAS  Google Scholar 

  15. 15.

    V. Singh, A.K. Thakur, S.S. Pandey, W. Takashima, K. Kaneto, Jpn. J. Appl. Phys. 47, 1251–1255 (2008)

    CAS  Google Scholar 

  16. 16.

    Q. Wang, Y. Zhou, H. Zheng, J. Shi, C. Li, C.Q. Su, L. Wang, C. Luo, D. Hu, J. Pei, J. Wang, J. Peng, Y. Cao, Org. Electron. 12, 1858–1863 (2011)

    CAS  Google Scholar 

  17. 17.

    V. Singh, S.S. Pandey, W. Takashima, K. Kaneto, Jpn. J. Appl. Phys. 48, 061503 (2009)

    Google Scholar 

  18. 18.

    K. Bhargava, V. Singh, Synth. Met. 211, 49–57 (2016)

    CAS  Google Scholar 

  19. 19.

    V. Singh, A.K. Thakur, S.S. Pandey, W. Takashima, K. Kaneto, Org. Electron. 9, 790–796 (2008)

    CAS  Google Scholar 

  20. 20.

    W.R. Salaneck, M. Lögdlund, J. Birgersson, P. Barta, R. Lazzaroni, J.L. Brédas, Synth. Met. 85, 1219–1220 (1997)

    CAS  Google Scholar 

  21. 21.

    K. Kanai, M. Honda, H. Ishii, Y. Ouchi, K. Seki, Org. Electron. 13, 309–319 (2012)

    CAS  Google Scholar 

  22. 22.

    K. Bhargava, M. Shukla, V. Singh, Synth. Met. 233, 15–21 (2017)

    CAS  Google Scholar 

  23. 23.

    H.N. Tsao, D. Cho, J.W. Andreason, A. Rouhanipour, D.W. Breiby, W. Pisula, K. Müllen, Adv. Mater. 21, 209–212 (2009)

    CAS  Google Scholar 

  24. 24.

    J. Kan, Y. Chen, D. Qi, Y. Liu, J. Jiang, Adv. Mater. 24, 1755–1758 (2012)

    CAS  Google Scholar 

  25. 25.

    Y. Liu, Q. Shi, H. Dong, J. Tan, W. Hu, X. Zhan, Org. Electron. 13, 2372–2378 (2012)

    CAS  Google Scholar 

  26. 26.

    A. Carlo, F. Piacenza, A. Bolognesi, B. Stadlober, H. Maresch, Appl. Phys. Lett. 86, 263501 (2005)

    Google Scholar 

  27. 27.

    H. Sirringhaus, Adv. Mater. 17, 2411–2425 (2005)

    CAS  Google Scholar 

  28. 28.

    W. Zhang, Y. Han, X. Zhu, Z. Fei, Y. Feng, N.D. Treat, H. Faber, N. Stingelin, I. McCulloch, T.D. Anthopoulos, M. Heeney, Adv. Mater. 28, 3922–3927 (2016)

    CAS  Google Scholar 

  29. 29.

    K. Sethuraman, S. Ochiai, K. Kojima, T. Mizutani, Appl. Phys. Lett. 92, 183302 (2008)

    Google Scholar 

  30. 30.

    S. Han, X. Yu, W. Shi, X. Zhuang, J. Yu, Org. Electron. 27, 160–166 (2015)

    CAS  Google Scholar 

  31. 31.

    L.A. Morrison, D. Stanfield, M. Jenkins, A.A. Baronov, D.L. Patrick, J.M. Leger, Org. Electron. 33, 269–273 (2016)

    CAS  Google Scholar 

  32. 32.

    T. Morita, V. Singh, S. Nagamatsu, S. Oku, W. Takashima, K. Kaneto, Appl. Phys. Express 2, 111502 (2009)

    Google Scholar 

  33. 33.

    M. Pandey, S. Nagamatsu, S.S. Pandey, S. Hayase, W. Takashima, Org. Electron. 38, 115–120 (2016)

    CAS  Google Scholar 

  34. 34.

    M. Pandey, S.S. Pandey, S. Nagamatsu, S. Hayase, W. Takashima, Org. Electron. 43, 240–246 (2017)

    CAS  Google Scholar 

  35. 35.

    M. Pandey, S.S. Pandey, S. Nagamatsu, S. Hayase, W. Takashima, Thin Solid Films 619, 125–130 (2016)

    CAS  Google Scholar 

  36. 36.

    K. Bhargava, V. Singh, Appl. Phys. Express 9, 091601 (2016)

    Google Scholar 

  37. 37.

    A. Nawaz, A. Kumar, I.A. Hṻmmelgen, Org. Electron. 51, 94–102 (2017)

    CAS  Google Scholar 

  38. 38.

    M. Pandey, S. Nagamatsu, W. Takashima, S.S. Pandey, S. Hayase, J. Phys. Chem. C 121, 11184–11184 (2017)

    CAS  Google Scholar 

  39. 39.

    J. Clark, J.-F. Chang, F.C. Spano, R.H. Friend, C. Silva, Appl. Phys. Lett. 94, 163306 (2009)

    Google Scholar 

  40. 40.

    J.-F. Chang, J. Clark, N. Zhao, H. Sirringhaus, D.W. Breiby, J.W. Andreasen, M.M. Nielsen, M. Giles, M. Heeney, I. McCulloch, Phys. Rev. B 74, 11531 (2006)

    Google Scholar 

  41. 41.

    J. Clark, C. Silva, R.H. Friend, F.C. Spano, Phys. Rev. Lett. 98, 206406 (2007)

    Google Scholar 

  42. 42.

    M. Sim, J. Shin, C. Shim, M. Kim, S.B. Jo, J.-H. Kim, K. Cho, J. Phys. Chem. C 118, 760–766 (2014)

    CAS  Google Scholar 

  43. 43.

    E.-S. Shin, Y.-Y. Noh, Org. Electron. 53, 111–116 (2018)

    CAS  Google Scholar 

  44. 44.

    Y. Hu, G. Li, Z. Chen, IEEE Electron Device Lett. 39, 276–279 (2018)

    Google Scholar 

  45. 45.

    W.C. Tsoi, D.T. James, J.S. Kim, P.G. Nicholson, C.E. Murphy, D.D.C. Bradley, J. Nelson, J.S. Kim, J. Am. Chem. Soc. 133, 9834–9841 (2011)

    CAS  Google Scholar 

  46. 46.

    H.F. Haneef, A.M. Zeidell, O.D. Jurchescu, J. Mater. Chem. C 8, 759–787 (2020)

    CAS  Google Scholar 

  47. 47.

    Y. Xu, C. Liu, D. Khim, Y.-Y. Noh, Phys. Chem. Chem. Phys. 17, 26553–26574 (2015)

    CAS  Google Scholar 

  48. 48.

    T. Matsumoto, W. Ou-Yang, K. Miyake, T. Uemura, J. Takeya, Org. Electron. 14, 2590–2595 (2013)

    CAS  Google Scholar 

  49. 49.

    C. Liu, Y. Xu, Y.-Y. Noh, Mater. Today 18, 79–96 (2015)

    CAS  Google Scholar 

  50. 50.

    S.D. Wang, T. Miyadera, T. Minari, Y. Aoyagi, K. Tsukagoshi, Appl. Phys. Lett. 93, 043311 (2008)

    Google Scholar 

  51. 51.

    Y. Xu, C. Liu, W. Scheideler, P. Darmawan, S. Li, F. Balestra, G. Ghibaudo, K. Tsukagoshi, Org. Electron. 14, 1797–1804 (2013)

    CAS  Google Scholar 

  52. 52.

    L. Shu, W. Shi, W. Huang, J. Yu, J. Mater. Sci. Mater. Electron. 25, 5540–5545 (2014)

    CAS  Google Scholar 

  53. 53.

    A. Dauendorffer, S. Nagamatsu, W. Takashima, K. Kaneto, Jpn. J. Appl. Phys. 51, 055802 (2012)

    Google Scholar 

Download references

Acknowledgements

One of the authors V.S. would like to thank Department of Science and Technology (DST) India, for providing financial support to the Project No: EMR/2016/008018, titled “Development of Low Voltage High Sensitivity Organic Photosensitive Transistors for Near Infrared Light Sensors”. K.B. is grateful to Sophisticated Instrument Centre, IIT Indore for providing the fluorescence facility. Authors would further like to acknowledge Dr. Pankaj R Sagdeo, IIT Indore for providing the usage of UV–Visible spectrophotometer. V.S. would also like to thank director IIT Indore for his constant support.

Funding

The research is presented by “Department of Science and Technology (DST) India under the Project No: EMR/2016/008018, titled “Development of Low Voltage High Sensitivity Organic Photosensitive Transistors for Near Infrared Light Sensors”.

Author information

Affiliations

Authors

Contributions

KB: Conceptualization; Data curation; Formal analysis; Investigation; Methodology and Writing-original draft. NY: Data curation; Validation; Writing—review & editing. NK: Data curation and Validation. SSP: Resources and Validation. VS: Funding acquisition, Project administration; Resources; Supervision, Validation and Writing—review & editing.

Corresponding author

Correspondence to Vipul Singh.

Ethics declarations

Conflict of interest

Not applicable.

Code availability

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bhargava, K., Yadav, N., Kumari, N. et al. Reduced contact resistance in organic field-effect transistors fabricated using floating film transfer method. J Mater Sci: Mater Electron (2020). https://doi.org/10.1007/s10854-020-04092-1

Download citation