Skip to main content

Advertisement

Log in

Structure, DFT calculations and heat transfer enhancement in [ZnO/PG + H2O]C hybrid nanofluid flow as a potential solar cell coolant application in a double-tube

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This study concentrated on the deployment of PG + H2O (30:70) in a solar cell cooling system-based combination ZnO nanofluid. Zinc oxide nanoparticles [ZnO]NPs, with crystallite size of average 70 ± 1 nm, were synthesized by a sol–gel method. The results specifically demonstrate that, the optical energy band difference values decrease from 4.644 eV for [ZnO + PG]NPs to 4.615 eV for and [ZnO/PG + H2O]C using the Tauc’s equation. Propylene glycol (PG)/water blend was doped with [ZnO]NPs at various concentrations < 1.0 wt% to study the optical characteristics of these nanofluids. The goal of this analysis is to test the hydrothermal efficiency, thermal conductivity, and viscosity of a non-Newtonian hybrid nanofluid in double-channel heat exchange device. Different experimental characterization techniques for [ZnO/PG + H2O]C like UV–Vis, FT-IR, XRD, SEM, DFT calculations and optical characteristics have been used. The overall coefficient of heat transfer in the cell cooling system has been improved, with the rise of [ZnO]NPs (has achieved the most at 0.3 vol%) in ZnO–PG nanofluid. The coefficient of heat transfer has been enhanced 46% at the temperature from 40 to 60 °C with 0.2 vol% of [ZnO]NPs. The findings showed [ZnO/PG + H2O]C nanofluid is rapidly absorbing heat and solar radiation, compared with PG–H2O.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. M.-Y. Wen, C.-Y. Ho, Heat-transfer enhancement in fin-and-tube heat exchanger with improved fin design. Appl. Therm. Eng. 29(5–6), 1050–1057 (2009)

    Google Scholar 

  2. D.P. Kulkarni, R.S. Vajjha, D.K. Das, D. Oliva, Application of aluminum oxide nanofluids in diesel electric generator as jacket water coolant. Appl. Therm. Eng. 28(14–15), 1774–1781 (2008)

    CAS  Google Scholar 

  3. J.R. Satti, D.K. Das, D. Ray, Investigation of the thermal conductivity of propylene glycol nanofluids and comparison with correlations. Int. J. Heat Mass Transfer 107, 871–881 (2017)

    CAS  Google Scholar 

  4. M.R. Eid, A. Alsaedi, T. Muhammad, T. Hayat, Comprehensive analysis of heat transfer of gold-blood nanofluid (Sisko-model) with thermal radiation. Results Phys. 7, 4388–4393 (2017)

    Google Scholar 

  5. M.R. Eid, Time-dependent flow of water-NPs over a stretching sheet in a saturated porous medium in the stagnation-point region in the presence of chemical reaction. J. Nanofluids 6(3), 550–557 (2017)

    Google Scholar 

  6. A. Wakif, Z. Boulahia, F. Ali, M.R. Eid, R. Sehaqui, Numerical analysis of the unsteady natural convection MHD Couette nanofluid flow in the presence of thermal radiation using single and two-phase nanofluid models for Cu–water nanofluids. Int. J. Appl. Comput. Math. 4(3), 81 (2018)

    Google Scholar 

  7. T. Muhammad, D.-C. Lu, B. Mahanthesh, M.R. Eid, M. Ramzan, A. Dar, Significance of Darcy-Forchheimer porous medium in nanofluid through carbon nanotubes. Commun. Theor. Phys. 70(3), 361 (2018)

    CAS  Google Scholar 

  8. N. Boumaiza, M. Kezzar, M.R. Eid, I. Tabet, On numerical and analytical solutions for mixed convection Falkner-Skan flow of nanofluids with variable thermal conductivity. Waves Random Complex Media (2019). https://doi.org/10.1080/17455030.2019.1686550

    Article  Google Scholar 

  9. M.R. Eid, A. Al-Hossainy, M.S. Zoromba, FEM for blood-based SWCNTs flow through a circular cylinder in a porous medium with electromagnetic radiation. Commun. Theor. Phys. 71(12), 1425 (2019)

    CAS  Google Scholar 

  10. S. Lahmar, M. Kezzar, M.R. Eid, M.R. Sari, Heat transfer of squeezing unsteady nanofluid flow under the effects of an inclined magnetic field and variable thermal conductivity. Phys. A 540, 123138 (2020)

    Google Scholar 

  11. M.R. Eid, Effects of NP shapes on non-Newtonian bio-nanofluid flow in suction/blowing process with convective condition: Sisko model. J. Non-Equilib. Thermodyn. 45(2), 97–108 (2020)

    CAS  Google Scholar 

  12. M.R. Eid, O. Makinde, Solar radiation effect on a magneto nanofluid flow in a porous medium with chemically reactive species. Int. J. Chem. React. Eng. 16(9), 20170212 (2018)

    CAS  Google Scholar 

  13. K. Hosseinzadeh, M.E. Moghaddam, A. Asadi, A. Mogharrebi, D. Ganji, Effect of internal fins along with hybrid nano-particles on solid process in star shape triplex latent heat thermal energy storage system by numerical simulation. Renew. Energy 154, 497–507 (2020)

    CAS  Google Scholar 

  14. K. Hosseinzadeh, A. Mogharrebi, A. Asadi, M. Paikar, D. Ganji, Effect of fin and hybrid nano-particles on solid process in hexagonal triplex latent heat thermal energy storage system. J. Mol. Liq. 300, 112347 (2020)

    CAS  Google Scholar 

  15. M.R. Eid, K. Mahny, A. Dar, T. Muhammad, Numerical study for Carreau nanofluid flow over a convectively heated nonlinear stretching surface with chemically reactive species. Phys. A 540, 123063 (2020)

    Google Scholar 

  16. M. Masjedi, N. Mir, E. Noori, T. Gholami, M. Salavati-Niasari, Effect of Schiff base ligand on the size and the optical properties of TiO2 nanoparticles. Superlattice. Microstruct. 62, 30–38 (2013)

    CAS  Google Scholar 

  17. F. Ansari, A. Sobhani, M. Salavati-Niasari, Facile synthesis, characterization and magnetic property of CuFe12O19 nanostructures via a sol–gel auto-combustion process. J. Magn. Magn. Mater. 401, 362–369 (2016)

    CAS  Google Scholar 

  18. M. Mahdiani, A. Sobhani, F. Ansari, M. Salavati-Niasari, Lead hexaferrite nanostructures: green amino acid sol–gel auto-combustion synthesis, characterization and considering magnetic property. J. Mater. Sci. 28(23), 17627–17634 (2017)

    CAS  Google Scholar 

  19. M. Bahiraei, A. Godini, A. Shahsavar, Thermal and hydraulic characteristics of a minichannel heat exchanger operated with a non-Newtonian hybrid nanofluid. J. Taiwan Inst. Chem. Eng. 84, 149–161 (2018)

    CAS  Google Scholar 

  20. D.Q.S. Mahdi, D.K. Abdul-Hussein, A.M. Isfayh, Effect of () Nanofluid on heat transfer characteristics for circular finned tube heat exchange. Int. J. Mech. Eng. Technol. 7(3), 86–101 (2016)

    Google Scholar 

  21. M.H. Esfe, M.R.H. Ahangar, D. Toghraie, M.H. Hajmohammad, H. Rostamian, H. Tourang, Designing artificial neural network on thermal conductivity of Al2O3–water–EG (60–40%) nanofluid using experimental data. J. Therm. Anal. Calorim. 126(2), 837–843 (2016)

    Google Scholar 

  22. B.C. Pak, Y.I. Cho, Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp. Heat Transfer 11(2), 151–170 (1998)

    CAS  Google Scholar 

  23. Y. Xuan, W. Roetzel, Conceptions for heat transfer correlation of nanofluids. Int. J. Heat Mass Transfer 43(19), 3701–3707 (2000)

    CAS  Google Scholar 

  24. M. Corcione, Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids. Energy Convers. Manage. 52(1), 789–793 (2011)

    CAS  Google Scholar 

  25. W. Duangthongsuk, S. Wongwises, An experimental study on the heat transfer performance and pressure drop of TiO2-water nanofluids flowing under a turbulent flow regime. Int. J. Heat Mass Transfer 53(1–3), 334–344 (2010)

    CAS  Google Scholar 

  26. V. Gnielinski, New equations for heat and mass transfer in turbulent pipe and channel flow. Int. Chem. Eng. 16(2), 359–368 (1976)

    Google Scholar 

  27. S. Hahn, S. Ham, M. Cho, Simulation studies of amide I IR absorption and two-dimensional IR spectra of β hairpins in liquid water. J. Phys. Chem. B 109, 11789–11801 (2005)

    CAS  Google Scholar 

  28. A. Abd-Elmageed, A.F. Al-Hossainy, E. Fawzy, N. Almutlaq, M.R. Eid, A. Bourezgui, S. Abdel-Hamid, N. Elsharkawy, M. Zwawi, M. Abdel-Aziz, Synthesis, characterization and DFT molecular modeling of doped poly (para-nitroaniline-co-para-toluidine) thin film for optoelectronic devices applications. Opt. Mater. 99, 109593 (2020)

    CAS  Google Scholar 

  29. K. Ramasesha, L. De Marco, A. Mandal, A. Tokmakoff, Water vibrations have strongly mixed intra-and intermolecular character. Nat. Chem. 5, 935–940 (2013)

    CAS  Google Scholar 

  30. M.S. Zoromba, A.F. Al-Hossainy, Doped poly (o-phenylenediamine-co-p-toluidine) fibers for polymer solar cells applications. Sol. Energy 195, 194–209 (2020)

    CAS  Google Scholar 

  31. E. Kauppi, L. Halonen, Fermi resonances between CH stretching and bending vibrations in CHF3, CHCl3, and (CF3)3CH. J. Chem. Phys. 90, 6980–6992 (1989)

    CAS  Google Scholar 

  32. A.F. Al-Hossainy, A.E. Mohamed, F.S. Hassan, M.A. Allah, Determination of cadmium and lead in perch fish samples by differential pulse anodic stripping voltammetry and furnace atomic absorption spectrometry. Arab. J. Chem. 10, S347–S354 (2017)

    CAS  Google Scholar 

  33. H. Noothalapati, T. Sasaki, T. Kaino, M. Kawamukai, M. Ando, H.-O. Hamaguchi, T. Yamamoto, Label-free chemical imaging of fungal spore walls by Raman microscopy and multivariate curve resolution analysis. Sci. Rep. 6, 27789 (2016)

    CAS  Google Scholar 

  34. F.S. Hassan, A.F. Al-Hossainy, A.E. Mohamed, Diphosphine compounds, part III: UV/visible spectroscopy and novel routes to functionalized diphosphine-M (CO) 6 complexes (M= W, Mo, or Cr). Phosphorus Sulfur Silicon 184, 2996–3022 (2009)

    CAS  Google Scholar 

  35. Y. Orooji, R. Mohassel, O. Amiri, A. Sobhani, M. Salavati-Niasari, Gd2ZnMnO6/ZnO nanocomposites: green sol-gel auto-combustion synthesis, characterization and photocatalytic degradation of different dye pollutants in water. J. Alloys Compd. 835, 155240 (2020)

    CAS  Google Scholar 

  36. M. Abdel-Aziz, M.S. Zoromba, M. Bassyouni, M. Zwawi, A. Alshehri, A.F. Al-Hossainy, Synthesis and characterization of Co–Al mixed oxide nanoparticles via thermal decomposition route of layered double hydroxide. J. Mol. Struct. 1206, 127679 (2020)

    CAS  Google Scholar 

  37. J. Li, Q. Liu, J.P. Lemmon, R.A. Flores, T. Bligaard, DFT simulation of the X-ray diffraction pattern of the aluminum-ion intercalated graphite used as the cathode material of the aluminum-ion battery. Phys. Chem. Chem. Phys. 22, 5969–5975 (2020)

    CAS  Google Scholar 

  38. A.F. Al-Hossainy, M.R. Eid, M.S. Zoromba, Prediction of molecular characteristics and molecular spectroscopy of hydrochloric acid-doped poly (ortho-anthranilic acid-co-para nitroaniline) thin film. J. Electron. Mater. 48, 8107–8115 (2019)

    CAS  Google Scholar 

  39. A.F. Al-Hossainy, M.S. Zoromba, Doped-poly (para-nitroaniline-co-aniline): synthesis, semiconductor characteristics, density, functional theory and photoelectric properties. J. Alloys Compd. 789, 670–683 (2019)

    CAS  Google Scholar 

  40. K. Luberda-Durnaś, M. Szczerba, M. Lempart, Z. Ciesielska, A. Derkowski, Layer stacking disorder in Mg–Fe chlorites based on powder X-ray diffraction data. Am. Miner. 105, 353–362 (2020)

    Google Scholar 

  41. M.S. Zoromba, M. Bassyouni, M. Abdel-Aziz, A.F. Al-Hossainy, N. Salah, A. Al-Ghamdi, M.R. Eid, Structure and photoluminescence characteristics of mixed nickel–chromium oxides nanostructures. Appl. Phys. A 125(9), 642 (2019)

    Google Scholar 

  42. A.F. Al-Hossainy, M.R. Eid, M.S. Zoromba, Structural, DFT, optical dispersion characteristics of novel [DPPA-Zn-MR (Cl)(H2O)] nanostructured thin films. Mater. Chem. Phys. 232, 180–192 (2019)

    CAS  Google Scholar 

  43. M. Schneider, E. George, T. Manescau, T. Záležák, J. Hunfeld, A. Dlouhý, G. Eggeler, G. Laplanche, Analysis of strengthening due to grain boundaries and annealing twin boundaries in the CrCoNi medium-entropy alloy. Int. J. Plast. 124, 155–169 (2020)

    CAS  Google Scholar 

  44. M. Abdel-Aziz, A.F. Al-Hossainy, A. Ibrahim, S.A. El-Maksoud, M.S. Zoromba, M. Bassyouni, S. Abdel-Hamid, A. Abd-Elmageed, I. Elsayed, O. Alqahtani, Synthesis, characterization and optical properties of multi-walled carbon nanotubes/aniline-o-anthranilic acid copolymer nanocomposite thin films. J. Mater. Sci. 29, 16702–16714 (2018)

    CAS  Google Scholar 

  45. A.F. Al-Hossainy, H.K. Thabet, M.S. Zoromba, A. Ibrahim, Facile synthesis and fabrication of a poly (ortho-anthranilic acid) emeraldine salt thin film for solar cell applications. New J. Chem. 42, 10386–10395 (2018)

    CAS  Google Scholar 

  46. A.F. Al-Hossainy, M. Bassyouni, M.S. Zoromba, Elucidation of electrical and optical parameters of poly (o-anthranilic acid)-poly (o-amino phenol)/copper oxide nanocomposites thin films. J. Inorg. Organomet. Polym. Mater. 28, 2572–2583 (2018)

    CAS  Google Scholar 

  47. N. Mir, M. Salavati-Niasari, Photovoltaic properties of corresponding dye sensitized solar cells: effect of active sites of growth controller on TiO2 nanostructures. Sol. Energy 86(11), 3397–3404 (2012)

    CAS  Google Scholar 

  48. O.A. El-Gammal, A.F. Al-Hossainy, S.A. El-Brashy, Spectroscopic, DFT, optical band gap, powder X-ray diffraction and bleomycin-dependant DNA studies of Co (II), Ni (II) and Cu (II) complexes derived from macrocyclic Schiff base. J. Mol. Struct. 1165, 177–195 (2018)

    CAS  Google Scholar 

  49. A.F. Al-Hossainy, M.S. Zoromba, New organic semiconductor thin film derived from p-toluidine monomer. J. Mol. Struct. 1156, 83–90 (2018)

    CAS  Google Scholar 

  50. A.F. Al-Hossainy, M.S. Zoromba, O. El-Gammal, F.I. El-Dossoki, Density functional theory for investigation of optical and spectroscopic properties of zinc-quinonoid complexes as semiconductor materials. Struct. Chem. 30, 1365–1380 (2019)

    CAS  Google Scholar 

  51. M. Mousavi-Kamazani, M. Salavati-Niasari, M. Sadeghinia, Facile hydrothermal synthesis, formation mechanism and solar cell application of CuInS2 nanoparticles using novel starting reagents. Mater. Lett. 142, 145–149 (2015)

    CAS  Google Scholar 

  52. A.F. Al-Hossainy, M.S. Zoromba, M. Abdel-Aziz, M. Bassyouni, A. Attar, M. Zwawi, A. Abd-Elmageed, H. Maddah, A.B. Slimane, Fabrication of heterojunction diode using doped-poly (ortho-aminophenol) for solar cells applications. Phys. B 566, 6–16 (2019)

    CAS  Google Scholar 

  53. M.S. Zoromba, M. Abdel-Aziz, M. Bassyouni, H. Bahaitham, A. Al-Hossainy, Poly (o-phenylenediamine) thin film for organic solar cell applications. J. Solid State Electrochem. 22, 3673–3687 (2018)

    CAS  Google Scholar 

  54. A. Ibrahim, M. Abdel-Aziz, M.S. Zoromba, A.F. Al-Hossainy, Structural, optical, and electrical properties of multi-walled carbon nanotubes/polyaniline/Fe3O4 ternary nanocomposites thin film. Synth. Metals 238, 1–13 (2018)

    CAS  Google Scholar 

  55. A.F. Al-Hossainy, A. Abd-Elmageed, A.T.A. Ibrahim, Synthesis, structural and optical properties of gold nanoparticle-graphene-selenocysteine composite bismuth ultrathin film electrode and its application to Pb (II) and Cd (II) determination. Arab. J. Chem. 12, 2853–2863 (2019)

    CAS  Google Scholar 

  56. M.S. Zoromba, A. Al-Hossainy, M. Abdel-Aziz, Conductive thin films based on poly (aniline-co-o-anthranilic acid)/magnetite nanocomposite for photovoltaic applications. Synth. Metals 231, 34–43 (2017)

    CAS  Google Scholar 

  57. X. Zhou, Y. Wang, K. Zheng, H. Huang, Comparison of heat transfer performance of ZnO-PG, α-Al2O3-PG, and γ-Al2O3-PG nanofluids in car radiator. Nanomater. Nanotechnol. 9, 1–12 (2019)

    Google Scholar 

  58. F.M. Hady, F.S. Ibrahim, S.M. Abdel-Gaied, M.R. Eid, Radiation effect on viscous flow of a nanofluid and heat transfer over a nonlinearly stretching sheet. Nanoscale Res. Lett. 7(1), 229 (2012)

    Google Scholar 

  59. K.-C. Fang, C.-I. Weng, S.-P. Ju, An investigation into the structural features and thermal conductivity of silicon nanoparticles using molecular dynamics simulations. Nanotechnology 17(15), 3909 (2006)

    CAS  Google Scholar 

  60. P. Shima, J. Philip, B. Raj, Role of microconvection induced by Brownian motion of nanoparticles in the enhanced thermal conductivity of stable nanofluids. Appl. Phys. Lett. 94(22), 223101 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed R. Eid.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Hossainy, A.F., Eid, M.R. Structure, DFT calculations and heat transfer enhancement in [ZnO/PG + H2O]C hybrid nanofluid flow as a potential solar cell coolant application in a double-tube. J Mater Sci: Mater Electron 31, 15243–15257 (2020). https://doi.org/10.1007/s10854-020-04089-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04089-w

Navigation